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Rozdział 1

Życiorys zawodowy

1.1 Dane osobowe

• Imię i nazwisko: Katarzyna Weron (Katarzyna Sznajd-Weron w publikacjach)

• Data i miejsce urodzenia: 7 kwietnia 1971, Wrocław

• Obywatelstwo: polskie

• Stan cywilny: mężatka, dwóch synów (1996, 2001)

• Adres zamieszkania: Dębowa 16, 51-217 Pruszowice, Polska

1.2 Aktualne miejsce zatrudnienia

Profesor nadzwyczajny, od 1.10.2013
Katedra Fizyki Teoretycznej, Wydział Podstawowych Problemów Techniki,
Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
Tel. (+48-71) 320-2159 , Fax. (+48-71) 328-3696
E-mail: katarzyna.weron@pwr.wroc.pl,
URL: http://www.if.pwr.wroc.pl/˜katarzynaweron

1.3 Historia zatrudnienia

10.2013-teraz Profesor nadzwyczajny, Wydział Podstawowych Problemów Techniki (WPPT),
Politechnika Wrocławska (PWr)

09.2011-09.2013 Profesor nadzwyczajny, Instytut Fizyki Teoretycznej (IFT), Uniwer-
sytet Wrocławski (UWr)

07.2012-09.2013 Kierownik Katedry UNESCO Badań Interdyscyplinarnych, IFT UWr

09.2009-09.2013 Kierownik Zakładu Układów Złożonych i Dynamiki Nieliniowej, IFT
UWr
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01.2007-09.2011 Adiunkt z habilitacją, Instytut Fizyki Teoretycznej UWr

02.1999-12.2006 Adiunkt, Instytut Fizyki Teoretycznej UWr

09.1995-12.1998 Doktorant, Instytut Fizyki Teoretycznej UWr

1.4 Stopnie naukowe i zawodowe

16.12.2006 Doktor habilitowany nauk fizycznych w zakresie fizyki, specjalność fizyka
statystyczna (Uniwersytet Wrocławski, Wydział Fizyki i Astronomii, Instytut Fizyki
Teoretycznej) na podstawie rozprawy: Nowa lokalna dynamika w układzie spinów
isingowskich

18.12.1998 Doktor nauk fizycznych w zakresie fizyki, specjalność fizyka statystyczna
(Uniwersytet Wrocławski, Wydział Fizyki i Astronomii, Instytut Fizyki Teoretycz-
nej) na podstawie rozprawy: Modelowanie ewolucji biologicznej metodami fizyki sta-
tystycznej ; promotor: Prof. dr hab. Andrzej Pękalski

10.05.1995 Magister fizyki komputerowej (Uniwersytet Wrocławski, Wydział Fizyki i
Astronomii, Instytut Fizyki Teoretycznej) na podstawie pracy: Modelowanie dyfuzji
Li na Mo(112); opiekun: Prof. dr hab. Andrzej Pękalski
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Rozdział 2

Autoreferat

2.1 Informacja o osiągnięciach naukowych

Moje zainteresowania naukowe stopniowo ewoluowały, od zagadnień związanych z za-
stosowaniem metod fizyki statystycznej w modelowaniu układów biologicznych, poprzez
zastosowania fizyki statystycznej w badaniu układów społecznych aż po analizę przejść
fazowych w nierównowagowych układach spinowych. Mój dorobek naukowy można po-
dzielić na trzy grupy tematyczne:

I. zastosowania fizyki statystycznej w modelowaniu układów biologicznych – w latach
1996–2003,

II. zastosowania modeli agentowych w układach społecznych, w tym w finansach, mar-
ketingu i polityce – od 2000 roku,

III. teoretyczne aspekty nierównowagowych dynamik spinowych, w tym przejścia fa-
zowe i stacjonarne własności układów ze stanami absorpcyjnymi, ze szczególnym
uwzględnieniem prawdopodobieństwa ucieczki (exit probability)1 – od 2002 roku,

opisane pokrótce w rozdziałach 2.1.1–2.1.3. Mój dorobek obejmuje:

• 43 oryginalne artykuły naukowe opublikowane w czasopismach z listy JCR

• 2 recenzowane artykuły konferencyjne

• 5 artykułów popularnonaukowych

Niektóre wyniki były prezentowane również w trakcie wykładów na konferencjach i semi-
nariach w Polsce i za granicą. W szczególności wygłosiłam:

• 15 zaproszonych i plenarnych wykładów konferencyjnych, w tym 10 zagranicznych

• 20 zaproszonych wykładów seminaryjnych, w tym 9 w placówkach zagranicznych.
1To jest moje autorskie tłumaczenie angielskiego terminu exit probability, które wydaje mi się dość

dobrze oddawać znaczenie tej wielkości. Prawdopodobieństwo ucieczki oznacza bowiem prawdopodobień-
stwo tego, że układ ucieknie ze stanu początkowego z koncentracją początkową spinów ’do góry’ równą
x do stanu absorpcyjnego ze wszystkimi spinami ’do góry’.
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Muszę tutaj dodać, że z powodów rodzinnych, zrezygnowałam z wielu zaproszeń na kon-
ferencje, seminaria i dłuższe pobyty zagraniczne. Chociaż jestem świadoma tego, że staże,
wizyty naukowe i ogólnie współpraca jest niezwykle ważna dla rozwoju kariery nauko-
wej, podjęłam świadomą decyzję, stawiając na pierwszym miejscu moją rodzinę. Wierzę,
że pomimo tej kontrowersyjnej decyzji, wiele z otrzymanych przeze mnie wyników jest
dostrzegana, zarówno w Polsce jak i za granicą. Liczba cytowań moich prac bez samocy-
towań2 wg. bazy Web of Science (WoS) w latach 1996-2014 wynosi 914 . Ponadto, były
one wielokrotnie cytowane w książkach i monografiach, więcej szczegółów w rozdziale 3.1.

Moje badania od zawsze koncentrowały się na interdyscyplinarnych zastosowaniach
fizyki statystycznej. Po uzyskaniu magisterium z fizyki w maju 1995 (Uniwersytet
Wrocławski, specjalność: fizyka komputerowa), zaczęłam pracę poświęconą modelowaniu
ewolucji biologicznej, pod opieką Prof. Andrzeja Pękalskiego. W okresie 1996-2003, któ-
ry obejmuje również studia doktoranckie w Instytucie Fizyki Teoretycznej Uniwersytetu
Wrocławskiego (1995-1998), opublikowałam w tej dziedzinie 12 artykułów w czasopismach
naukowych. Tej tematyki dotyczył również mój doktorat, w ramach którego zapropono-
wałam model ewolucji pojedynczej cechy ilościowej w metapopulacji, składającej się z
wielu lokalnych populacji (tzw. demów) [8], [41], [42].3

Po uzyskaniu stopnia doktora w dziedzinie fizyki (w grudniu 1998 roku), konty-
nuowałam jeszcze przez jakiś czas badania dotyczące dynamiki układów biologicznych,
chociaż od roku 2000 moje zainteresowania stopniowo ewoluowały w kierunku prostych
modeli spinowych i ich zastosowań w naukach społecznych. Na pewno spory wpływ na
zmianę kierunku moich badań miały przeczytane wówczas publikacje i wysłuchane wykła-
dy prof. Serga Galama i prof. Janusza Hołysta. W roku 2000 opublikowałam, wraz z moim
ojcem prof. Józefem Sznajdem, mój pierwszy artykuł na temat dynamiki opinii, w którym
zaproponowaliśmy nowy prosty model, bazujący na idei spinów Isinga, znany obecnie ja-
ko model Sznajdów [38].4 Ta pierwsza praca okazała się udanym mariażem wieloletniego
doświadczenia mojego ojca w dziedzinie przemian fazowych w równowagowych układach
magnetycznych oraz mojego zainteresowania naukami społecznymi oraz doświadczenia w
dziedzinie nierównowagowych układów dynamicznych. Do dnia dzisiejszego, praca została
zacytowana ponad 500 razy (zgodnie z WoS) i pozostaje najczęściej cytowanym artykułem
opublikowanym w historii International Journal of Modern Physics C. Samemu modelowi
poświęcono wiele uwagi nie tylko w publikacjach naukowych, ale również w monografiach
czy książkach popularnonaukowych (np. cały rozdział w książce z 2006 roku A Beautiful
Math: John Nash, Game Theory, and the Modern Quest for a Code of Nature by Tom
Siegfried). Ku mojemu zaskoczeniu, model posiada również własną stronę w anglojęzycz-
nej wersji Wikipedii (http : //en.wikipedia.org/wiki/Sznajd model). Niewykluczone, że
ta popularność modelu Sznajdów znacząco przyczyniła się do tego, że w roku 2001 i po-
nownie w roku 2002 otrzymałam prestiżowe stypendium Fundacji na Rzecz Nauki Polskiej
(FNP) dla młodych naukowców.

W roku 2000 tematyka ’socjologiczna’ była jeszcze stosunkowo mało popularna wśród
fizyków, chociaż powoli zdobywała coraz mocniejszą pozycję w dziedzinie interdyscypli-

2Wykluczono te prace cytujące, w których pojawia się chociaż jeden z autorów pracy cytowanej
3Numeracja prac zgodna z wykazem publikacji w rozdziale 3.1.
4Termin Sznajd model został zaproponowany przez prof. Dietrich Stauffer w jego wczesnych publika-

cjach (2000-2002) na temat tego modelu.
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narnych zastosowań fizyki statystycznej. Wkrótce zaczęły powstawać specjalne sekcje to-
warzystw fizycznych, cykliczne konferencje, działy czasopism czy wręcz oddzielne czaso-
pisma poświęcone nowym, interdyscyplinarnym zastosowaniom fizyki statystycznej. W
roku 2002 sekcja Fizyki Układów Socjo-ekonomicznych (DPG Physics of Socio-Economic
Systems Division) Niemieckiego Towarzystwa Fizycznego ustanowiła ogólnoświatową na-
grodę dla najlepszego młodego socjo-/ekonofizyka, wyłanianego w drodze nominacji. W
2004 roku powstała również nowa sekcja Polskiego Towarzystwa Fizycznego Fizyka w Eko-
nomii i Naukach Społecznych (FENS). W tym samym roku odbyła się pierwsza cykliczna
konferencja European Conference on Complex Systems gromadząca, co roku w innym eu-
ropejskim mieście, uczonych z różnych dziedzin – od fizyków, matematyków, informatyków
po biologów, ekonomistów czy psychologów społecznych (http://eccs13.eu/).

Generalnie jednak, w tamtym okresie zastosowania fizyki w naukach społecznych to
była ”egzotyka”. Dlatego też, mając na uwadze zdobycie stopnia doktora habilitowanego
nauk fizycznych, poza pracą dotyczącą zastosowań prostych modeli w socjologii i ekonomii,
zajmowałam się teoretycznymi aspektami proponowanych modeli. W latach 2002–2005
powstał cykl 4 samodzielnych prac, opublikowanych w Physical Review E, poświęcony
nowej lokalnej dynamice w układzie spinów isingowskich [3]–[6]. Te cztery prace, wraz z
trzema innymi, dotyczącymi zastosowań modelu w naukach społecznych i ekonomicznych
(i.e. [32], [34], [38]), stały się podstawą mojej rozprawy habilitacyjnej złożonej we wrześniu
2005 roku. W grudniu 2006 odbyło się kolokwium habilitacyjne przed Radą Instytutu
Fizyki Teoretycznej Uniwersytetu Wrocławskiego, w wyniku którego otrzymałam stopień
naukowy doktora habilitowanego nauk fizycznych.

Po habilitacji moje zainteresowania skoncentrowały się wokół dwóch głównych obsza-
rów badawczych: (a) teoretycznych aspektów dynamik spinowych, w tym tych wykorzysty-
wanych do modelowania układów społecznych; (b) zastosowania modeli mikroskopowych
do analizy konkretnych zjawisk społecznych, w tym dyfuzji innowacji, skuteczności kam-
panii proekologicznych itp. Szczególnie owocnym w mojej karierze naukowej był rok 2007.
W roku 2007 wnioskowałam i otrzymałam dwuletni ministerialny projekt badawczy wła-
sny Nowa lokalna dynamika spinów Isinga z punktu widzenia teorii nierównowagowych
układów dynamicznych i zastosowań w modelowaniu grup społecznych. W tym samym
roku ministerialny grant promotorki został również przyznany mojej doktorantce Sylwii
Krupie, która w czerwcu 2009 r. obroniła pracę doktorską zatytułowaną Analiza ukła-
dów spinów isingowskich z zero-temperaturowymi lokalnymi dynamikami. W 2007 roku
miałam również zaszczyt otrzymać, wspomnianą wcześniej, ogólnoświatową nagrodę dla
najlepszego młodego socjo-/ekonofizyka (Young Scientist Award for Socio- and Econo-
physics) i wygłosić zaproszone wykłady na dwóch prestiżowych imprezach - na między-
narodowej szkole International School on Complexity. Course on Statistical Physics of
Social Dynamics: Opinions, Semiotic Dynamics, and Language (Erice, Sicily, 17.07.2007)
i międzynarodowym sympozjum Computational Philosophy: Lessons from Simple Models
(Niels Bohr Institute, Copenhagen, 13.10.2007). Wreszcie, we wrześniu 2007 roku, zorga-
nizowałam międzynarodową konferencję na cześć siedemdziesiątej rocznicy urodzin prof.
Andrzeja Pękalskiego – XXIII Max Born Symposium Critical Phenomena in Complex
Systems (Polanica-Zdrój).

Jak wspomniałam, w okresie po habilitacji ważny obszar moich badań stanowią teo-
retyczne aspekty nierównowagowych dynamik spinowych. Szczególnie interesujące okaza-
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ły się takie charakterystyki układów ze stanami absorpcyjnymi jak prawdopodobieństwo
ucieczki ([11], [20], [25]), jak również wrażliwość charakterystyk makroskopowych – w tym
przejść fazowych – na drobne zmiany wprowadzane na poziomie mikroskopowym ([1], [9],
[14], [16]–[19], [23], [26]). W moim odczuciu właśnie prace z tego obszary stanowią moje
największe osiągnięcie naukowe po habilitacji (patrz również rozdział 2.1.3 i 4).

Poza pracą teoretyczną, w ostatnich latach coraz intensywniej współpracuje z przed-
stawicielami nauk społecznych. W szczególności, w latach 2011-2014 byłam głównym wy-
konawcą w grancie Opus NCN HS Modelowanie dynamiki zachowań konsumentów na
rynkach oligopolistycznych za pomocą automatów komórkowych realizowanym na Wydzia-
le Organizacji i Zarządzania Politechniki Śląskiej w Gliwicach. Obecnie jestem głównym
wykonawcą w grancie Opus NCN HS Ekonomiczne konsekwencje kształtowania się opinii
i podejmowania decyzji przez konsumentów: Modelowanie agentowe dyfuzji innowacji re-
alizowanym na Wydziale Informatyki i Zarządzania Politechniki Wrocławskiej, w ramach
którego współpracuję głównie z ekonomistami. Byłam również współorganizatorem trzech
interdyscyplinarnych spotkań (CODYM 2013, CODYM-WIOSNA 2014, CODYM 2014;
szczegóły w rozdziale 3.5.7) zrzeszających badaczy z różnych dziedzin (fizyka, informatyka,
nauki społeczne). W latach 2012-2013 byłam szefem Katedry UNESCO Badań Interdy-
scyplinarnych (Uniwersytet Wrocławski) i organizowałam interdyscyplinarne seminaria
poświęcone układom złożonym. W ubiegłym (2014) roku zostałam zaproszona do wygło-
szenia wykładu plenarnego na VII Konferencji PsychologiI Ekonomicznej, zorganizowanej
przez Szkołę Wyższą Psychologii Społecznej (SWPS). Miałam również zaszczyt wygłosić
wykład inauguracyjny na Wrocławskim Wydziale SWPS w październiku 2014. W wyniku
kontaktów nawiązanych z SWPS, w 2015 roku rozpoczęłam współpracę z dr Katarzyną
Byrką z SWPS, psychologiem specjalizującym się w psychologii społecznej środowiska i
zdrowia. Obecnie jesteśmy w trakcie przygotowywania publikacji dotyczącej modelowania
psychologicznych, społecznych i ekonomicznych barier w dyfuzji innowacji.

Obecnie jestem również opiekunem stażu po-doktorskiego dr Anny Chmiel finansowa-
nego w ramach grantu NCN Fuga Procesy nierównowagowe na sieciach wielopoziomowych.
W związku z tym niektóre z moich ostatnich prac dotyczą roli topologii sieci w modelach
dynamiki opinii – dwa artykuły dotyczące tej tematyki zostały już opublikowane ([11],
[12]), a dwa kolejne znajdują się obecnie w recenzji5. Ten nowy kierunek badań, zapo-
czątkował współpracę z Grupą Sieci Społecznych (Social Network Group) na Politechnice
Wrocławskiej. Bez wątpienia temat sieci złożonych, w tym sieci wielopoziomowych i tem-
poralnych, będzie jednym z moich obszarów badawczych w najbliższej przyszłości.

2.1.1 Zastosowania fizyki statystycznej w modelowaniu układów
biologicznych

W latach 1996–2003 opublikowałam 12 prac dotyczących modelowania populacji biologicz-
nych i dynamiki populacji metodami fizyki statystycznej. Ostatnia z nich, która powstała
we współpracy z prof. Josephem Indekeu z Katolickiego Uniwersytetu w Leuven (Belgia),
dotyczyła wpływu antybiotyków na populację bakterii [31]. Pierwsza praca z tego okresu,

5A. Chmiel, K. Sznajd-Weron, Phase transitions in the q-voter model with noise on a duplex clique,
arXiv:1503.01400 [physics.soc-ph]; A. Jędrzejewski, K. Sznajd-Weron, J. Szwabiński, Mapping the q-voter
model: From a single chain to complex networks, arXiv:1501.05091 [physics.soc-ph]
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która została opublikowana w Physical Review Letters, była znacznie bardziej ogólna i
miała na celu odpowiedzieć na pytania: Jakie warunki są potrzebne aby populacja mogła
przeżyć w danym środowisku? Na ile mogą się różnić dwa środowiska aby populacja, migru-
jąca z jednego do drugiego środowiska, mogła przeżyć? Aby odpowiedzieć na te pytania,
zaproponowaliśmy model sieciowy, w którym każdy osobnik charakteryzowany był swoim
genotypem (modelowanym sekwencją zer i jedynek) i jednoznacznie zadanym przez geno-
typ fenotypem (czyli zestawem cech) [43]. Założyliśmy, że reprodukcja podlega prawom
Mendla, tzn. rozważaliśmy jedynie cechy jakościowe. Założyliśmy również, że środowisko
opisane jest przez pewien idealny fenotyp. Na podstawie symulacji Monte Carlo, byliśmy
w stanie określić warunki konieczne dla rozwoju populacji i kolonizacji nowej, początko-
wo pustej niszy. Model, choć niewątpliwie interesujący, był stosunkowo skomplikowany w
porównaniu do innych fizycznych modeli ewolucji biologicznej, a zatem trudny do analizy
teoretycznej. Z tego powodu postanowiłam nie kontynuować pracy nad tym modelem i
wróciłam do niego tylko raz, w 2001 roku [37].

W trakcie studiów doktoranckich zaproponowałam nowy, sieciowy model ekosystemu,
służący do badania różnicowania się w czasie i przestrzeni cech ilościowych6 w metapopu-
lacji złożonej z populacji lokalnych (tzw. demów). Chociaż idea modelu była zainspirowana
modelem magnetyzmu Blume-Capela, bazował on również na empirycznych obserwacjach
biologicznych dotyczących demów. Podobnie jak w rzeczywistych ekosystemach, zmiana
cechy lokalnej populacji spowodowana była z jednej strony przepływem genów od sąsiadu-
jących populacji, z drugiej zaś strony doborem naturalnym (GFS model od gene flow and
natural selection). Pokazałam, że współzawodnictwo, pomiędzy tymi dwoma czynnikami,
prowadzi do trzech podstawowych struktur, obserwowanych w naturze: (a) ciągły rozkład
populacji, w którym obserwowany jest przestrzenny gradient danej cechy ilościowej, (b)
rozróżnialne populacje graniczące strefą integracji lub (c) całkowicie izolowane populacje.
Podstawową metodą badawczą były symulacje Monte Carlo, jakkolwiek część wyników
udało się uzyskać drogą analityczną, dzięki zastosowaniu transformaty fourierowskiej i
przybliżenia pola średniego. W ramach tej tematyki opublikowałam 5 prac ([8],[39]-[42]),
z czego trzy stały się podstawą mojej rozprawy doktorskiej.

Spośród wszystkich zagadnień związanych z tematyką biologiczną, najwięcej czasu po-
święciłam modelowi GFS. Jednak, moim zdaniem, najbardziej interesujące wyniki uzyska-
łam w serii dwóch prac dotyczących niestabilności w dynamice populacji. W [7] zadałam
pytanie o istnienie krytycznej gęstości, poniżej której populacja jest skazana na zagładę
(tzw. minimalna wielkość populacji trwałej ). Aby odpowiedzieć na to pytanie, zapropo-
nowałam znaczne uproszczenie modelu wprowadzonego w [43], co pozwoliło na podejście
analityczne, przynajmniej w przybliżeniu średniego pola. Udało się pokazać analitycz-
nie, że ten prosty model dynamiki populacji jest w stanie opisać zarówno pojemność
środowiskową, która jest stabilnym stanem stałym populacji, jak i minimalną wielkość
populacji trwałej. Druga praca, w tym krótkim cyklu, została przygotowana wspólnie z
moim studentem, Marcinem Wolańskim [33]. W tej pracy rozważyliśmy ponownie model
zaproponowany w [7] i zbadaliśmy jaka strategia może pomóc populacji przetrwać.

6tzn. takich, którym można przyporządkować zmienną ciągłą, np. wzrost, masa, itp.
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2.1.2 Zastosowania modeli agentowych w układach społecznych

Wkrótce po uzyskaniu stopnia doktora zaczęłam się zajmować zastosowaniem idei i metod
fizyki statystycznej w naukach społecznych, a konkretnie modelowaniem dynamiki opinii,
która jest jednym z najintensywniej analizowanych zagadnień socjofizyki. Moim zdaniem,
istnieją co najmniej dwa powody, które sprawiają, że to zagadnienie jest pociągające dla
fizyków. Pierwszy określiłabym jako pokusę zbudowania pomostu między poziomami mi-
kro i makro w opisie układów społecznych. Tradycyjnie, istnieją dwie dziedziny, które
zajmują się analizą zachowań społecznych - socjologia i psychologia społeczna. Chociaż
przedmiot badań w obu dziedzinach jest właściwie taki sam, to jednak podejście, związa-
ne z poziomem analizy układu, jest znacząco różne. Socjologowie zajmują się układami
społecznymi z poziomu grupy społecznej, natomiast psychologowie społeczni koncentrują
się na poziomie jednostki (osoby). Z punktu widzenia fizyka, relacja pomiędzy socjologią a
psychologią społeczną przypomina łudzącą relację pomiędzy termodynamiką i fizyką sta-
tystyczną. Dlatego właśnie pojawia się pokusa, aby opisać i zrozumieć zachowania układów
społecznych (socjologia) z poziomu oddziaływań międzyludzkich (psychologia społeczna).
Ponieważ modele dynamiki opinii są często bardzo interesujące z teoretycznego punktu
widzenia, drugą motywacją zajęcia się tą tematyką był rozwój nierównowagowej fizyki
statystycznej. W 2000 roku zaproponowaliśmy mikroskopowy model [38], znany obecnie
jako model Sznajdów, który zainspirował wielu badaczy nie tylko do zastosowań społecz-
nych (np. kampanie marketingowe, rynki finansowe czy kampanie polityczne), ale także
do analizy teoretycznych aspektów modelu.

Chciałabym dodać, że zastosowania modeli mikroskopowych w naukach społecznych
są starsze niż socjofizyka, jeśli przyjąć, że socjofizyka narodziła się w 1982 roku7. Ponad
dekadę wcześniej, Thomas Schelling zaproponował model segregacji przestrzennej, zaska-
kująco podobny do modelu Isinga z dynamiką Kawasakiego8. Ostatnio, tego typu podej-
ście, znane obecnie jako modelowanie agentowe (agent-based modeling (ABM)), zdobywa
coraz większą popularność w naukach społecznych, szczególnie w dziedzinie marketingu.

Moje prace, poświęcone zastosowaniom modeli agentowych w naukach społecznych,
skoncentrowane są głównie na problemach związanych z marketingiem ([10], [12], [13],
[15], [24], [32]), jakkolwiek pierwsza z nich, poświęcona była opisowi dynamiki ceny na
rynkach finansowych [34]. Zaproponowaliśmy modyfikację modelu poprzez wprowadze-
nie dwóch typów graczy giełdowych – naśladowców (followers), którzy zachowywali się
zgodnie z regułami modelu Sznajdów, oraz fundamentalistów (fundamentalist), posiada-
jących swoja własną racjonalną strategię i pełną wiedzę o rynku. Już wprowadzenie tylko
jednego fundamentalisty diametralnie zmieniło zachowanie modelu i pozwoliło odtworzyć
empirycznie obserwowane charakterystyki rzeczywistych zwrotów cen.9

W kolejnej pracy [32] rozważaliśmy problem związany ze strategiami marketingowymi
na rynkach duopolistycznych (tzn. opanowanych przez dwóch konkurujących producen-
tów)10. W ramach zmodyfikowanego dwuwymiarowego modelu Sznajdów z zewnętrznym

7Wraz z publikacją S. Galam, Y. Gefen, Y. Shapir, Sociophysics: a new approach of sociological col-
lective behavior. I. Mean-behavior description of a strike, J. Math. Sociol. 9, 1-13 (1982).
8Dietrich Stauffer and Sorin Solomon in Ising, Schelling and self-organising segregation, Eur. Phys. J.

B 57, 473?79 (2007)
9W literaturze anglojęzycznej określane jako stylized facts of financial returns.
10Często podawanym przykładem duopolu jest tzw. Cola Wars – konkurencja pomiędzy Coca-Cola i
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polem (opisujacym reklamę), próbowaliśmy odpowiedzieć na pytanie o skuteczną strategię
marketingową. W oparciu o symulacje Monte Carlo, wykazaliśmy istnienie dwóch przejść
fazowych – jednego związanego z początkową liczbą konsumentów danego produktu (tzw.
masa krytyczna) oraz drugiego, związanego z intensywnością kampanii reklamowej. Pięć
lat później wróciliśmy do tego tematu, w bardziej ogólnym przypadku rynku oligopoli-
stycznego (kilka firm dominujących nad całym rynkiem w produkcji danego dobra) [24].
Rozpatrywaliśmy sytuację firmy, która wchodzi na rynek, opanowany już przez dwóch
równorzędnych graczy, na przykładzie operatora telekomunikacyjnego Idea (później na
Orange), który wchodził na rynek opanowany już przez dwie dobrze znane firmy (Era
i Plus)11. Analiza modelu została przeprowadzona zarówno metodą Monte Carlo, jak i
metodą pola średniego. Zaskakująco, najlepsze dopasowanie do danych empirycznych do-
tyczących rynku polskiej telefonii komórkowej, otrzymaliśmy przy założonym poziomie
konformizmu (jeden z parametrów modelu) p ∈ (0.3, 0.4), co jest zgodne z poziomem
konformizmu określonym przez Solomona Ascha w serii słynnych eksperymentów społecz-
nych.

W ubiegłych latach kontynuowałam badania w tym obszarze w ramach grantu NCN
Zastosowanie prostych modeli spinowych w marketingu społecznym i komercyjnym. Nawią-
załam również interdyscyplinarną współpracę z (1) Zespołem Modelowania Ekonomiczne-
go na Wydziale Informatyki i Zarządzania Politechniki Wrocławskiej, (2) ekonomistką dr
Agnieszką Kowalską-Styczeń z Wydziału Organizacji i Zarządzania Politechniki Śląskiej i
(3) psychologiem społecznym dr Katarzyną Byrką z Szkoły Wyższej Psychologii Społecz-
nej. W ramach tej współpracy wystąpiliśmy o dwa granty: (1) z Zespołem Modelowania
Ekonomicznego realizujemy obecnie grant badawczy Ekonomiczne konsekwencje kształto-
wania się opinii i podejmowania decyzji przez konsumentów: Modelowanie agentowe dyfu-
zji innowacji (NCN 2013/11/B/HS4/01061) a (2) z dr Kowalską-Styczeń realizowałyśmy
w latach 2011-2014 projekt Modelowanie dynamiki zachowań konsumentów na rynkach
oligopolistycznych za pomocą automatów komórkowych (NCN 2011/01/B/HS4/02740). W
efekcie tych działań w latach 2014-2014 opublikowaliśmy 4 prace dotyczące modelowa-
nia agentowego w marketingu ([10], [12], [13], [15]) a kolejne są w przygotowaniu. Moje
ostatnie publikacje z tego obszaru poświęcone są dyfuzji innowacji, w szczególności zwią-
zanej z produktami i usługami ekologicznymi. Jednym z poruszanych przez nas zagadnień
jest rozbieżność pomiędzy zamiarem a faktycznym zachowaniem (tzw. intention-behavior
gap), obserwowana empirycznie w przypadku niektórych innowacji takich jak dynamiczne
taryfy elektryczne czy zachowania prozdrowotne.

Poza pracami związanymi z finansami i marketingiem, zajmowałam się również zasto-
sowaniem ABM w polityce ([21], [30]). Moim zdaniem, szczególnie interesujący pomysł
zaproponowaliśmy w pracy [30]. Bazując na tzw. kompasie politycznym12, wprowadzili-
śmy model wykorzystujący pomysł, zaczerpnięty z modelu Ashkina-Tellera, żeby z każdą

Pepsi.
11Jako ciekawostkę podam, że współautorką publikacji była nasza mistrzyni olimpijska Maja Włosz-

czowska, która w tym okresie pisała pracę magisterską z matematyki finansowej, poświęconą zastosowaniu
modelu Sznajdów w marketingu. Dzięki Maji zdobyliśmy empiryczne dane dotyczące nie tylko udziałów w
rynku wszystkich trzech firm na przestrzeni lat 2000–2008, ale również kwartalnych nakładów na reklamę.
12Jest to model polityczny, opisujący postawy polityczne w dwóch wymiarach - stosunek do wolności

ekonomicznej i stosunek do wolności osobistej (zobacz Politicalcompass.org).
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jednostką związać dwa spiny Isinga – jeden reprezentujący opinię w sferze ekonomicz-
nej, a drugi w sferze osobistej. Założyliśmy, że mechanizmy zmiany opinii, w każdym z
tych dwóch obszarów są różne – w sferze ekonomicznej podlegają tzw. dynamice odpływu
(model Sznajdów) a w sferze osobistej dynamice dopływu (zero-temperaturowa dynamika
Glaubera).13 Pokazaliśmy, między innymi, że osiągnięcie konsensusu pomiędzy dwiema
grupami osób, różniących się tylko w sferze ekonomicznej, jest stosunkowo łatwe. Nato-
miast jeśli różnią się w sferze osobistej, konsensus jest niemożliwy. Poza zaskakującymi
implikacjami politycznymi (szczególnie w odniesieniu do polskiej sceny politycznej w roku
2005)14, wynik ten był interesujący również z teoretycznego punktu widzenia, wskazując
na różnice pomiędzy dynamiką dopływu i odpływu. Dlatego stał się dla mnie motywacją
do dalszych rozważań teoretycznych, które zaprezentuję w kolejnym rozdziale.

2.1.3 Teoretyczne aspekty nierównowagowych dynamik spino-
wych

Z jednej strony głównym wyzwaniem, z jakim mamy do czynienia modelując dynamikę
opinii, jest opisanie niezwykle złożonego układu społecznego przy pomocy stosunkowo
prostych, ale jednocześnie w miarę realistycznych reguł. To wyzwanie zainspirowało fizy-
ków do wprowadzenia modeli, które trudno byłoby uzasadnić na bazie zjawisk fizycznych,
ale są interesującą propozycją w przypadku układów społecznych. Z drugiej jednak strony
okazuje się, że te ”niefizyczne” modele, takie jak model Sznajdów, mogą być interesujące
same w sobie i dzięki temu przyczyniać się do rozwoju nierównowagowej fizyki statystycz-
nej.

W naszym modelu, podobnie jak w niektórych wcześniejszym modelach dynamiki
społecznej15, układ składa się z N osób, z których każda opisana jest pojedynczą dwu-
stanową opinią Si = ±1, podobnie jak cząstki w modelu Isinga. Chociaż może to być
zaskakujące, binarne opinie są naturalne z punktu widzenia nauk społecznych. Tak zwany
dychotomiczny format odpowiedzi – 1 (tak, prawda, zgadzam się) i 0 (nie, falsz, nie
zgadzam się) – jest jednym z najczęściej używanych w eksperymentach społecznych16.

Jak zauważył profesor Dietrich Stauffer, zasadnicza różnica pomiędzy modelem Sznaj-
dów a modelem wyborcy czy Isinga polega na tym, że w modelu Sznajdów informacja
przepływa w kierunku od centralnej grupy do sąsiadów, a nie w kierunku przeciwnym,
jak to ma zwykle miejsce (The crucial difference of the Sznajd model compared with voter
or Ising models is that information flows outward: A site does not follow what the neigh-

13Szersza dyskusja na temat dynamik odpływu i dopływu w rozdziale 2.1.3.
14Warto tu przypomnieć POPiS, przewidywaną koalicję dwóch zwycięskich partii wyborów parlamen-

tarnych w 2005. Zwykle wzbraniam się od prezentowania przewidywań na bazie modeli ABM. Jednak
w roku 2005, w trakcie Seminarium Wydziału Fizyki i Astronomii na Uniwersytecie Zielonogórskim,
pokusiłam się o stwierdzenie, że taka koalicja, zgodnie z naszym modelem, jest niemożliwa.
15Zobacz np. S. Galam, Majority rule, hierarchical structures and democratic totalitarianism: a sta-

tistical approach., J. Math. Psychol. 30, 42634 (1986); M. Lewenstein, A. Nowak, B. Latane, Statistical
mechanics of social impact., Phys. Rev. A 45, 76376 (1992); J. A. Hołyst, K. Kacperski, F. Schweitzer,
Social impact models of opinion dynamics. Ann. Rev. Comput. Phys. 9, 25373 (2001).
16R. W. Robins, R. C. Fraley and R. F. Krueger (Eds.) Handbook of research methods in personality

psychology New York: Guilford Press (2007)
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bours tell the site, but instead the site tries to convince the neighbours).17 Jednak dopiero
po jakimś czasie zaczęto dyskutować, czy dynamika dopływu (inflow dynamics) faktycz-
nie różni się od dynamiki odpływu (outflow dynamics). Jak na razie można spotkać w
literaturze sprzeczne opinie.18

Inną charakterystyczną cechą tego modelu jest fakt, że wpływ społeczny zachodzi tylko
w przypadku opinii jednomyślnych, a nie w przypadku bezwzględnej większości. Ta reguła
stała się podstawą bardziej ogólnego modelu, tzw. modelu q-wyborcy, zaproponowanego
w 2009 roku przez Castellano i innych19. Może nie być to zgodne z intuicją, ale właśnie
taka ostra reguła znajduje uzasadnienie w eksperymentach społecznych. Zaobserwowano,
że mała jednomyślna grupa jest znacznie bardziej skuteczna w przekonywaniu innych,
niż większa grupa osób z niejednomyślną większością. Co więcej, w przypadku większości,
może się zdarzyć, że to właśnie mniejszościowa opinia będzie bardziej przekonująca. Zanim
jednak przejdę do opisu badań, związanych z tymi dwiema wymienionymi cechami modelu,
czyli kierunkiem przepływu informacji i regułą jednomyślności, zacznę od chronologicznie
pierwszego z problemów teoretycznych, zainspirowanych modelem Sznajdów, nad którym
pracowałam.

W 2002 roku zadałam pytanie o możliwość wprowadzenia do modelu Sznajdów czegoś
na kształt hamiltonianu. Ze względu na brak symetrii oddziaływań, związany z dynamiką
odpływu, nie byłam w stanie wprowadzić hamiltonianu, w ścisłym tego słowa znaczeniu.
Zamiast tego wprowadziłam twór, tzw. funkcję niezgody (disagreement function), który
był odpowiedzialny za dynamikę modelu i był inspirowany hamiltonianem modelu ANNNI
(Axial Next-Nearest-Neighbor Ising). W przeciwieństwie do hamiltonianu, funkcja niezgo-
dy była minimalizowana tylko lokalnie i w efekcie układ mógł osiągać stany stacjonarne,
w których globalna funkcja niezgody nie była minimalizowana. Model był analizowany w
jednym [6] i dwóch wymiarach [5] zarówno metodą symulacji Monte Carlo, jak i anali-
tycznie w przybliżeniu średniego pola [3] i [4]. Ponadto, w [4] przy użyciu współczynnika
Boltzmanna, wprowadziłam do modelu parametr (T ), który grał rolę lokalnej tempera-
tury. Model okazał się być na tyle ciekawy, ze względu na nietrywialną ewolucję czasową
i złożone diagramy fazowe, że w latach 2002-2005, napisałam serię czterech autorskich
prac ([3]–[6]), które zostały opublikowane w Physical Review E i stały się podstawą mojej
habilitacji.

Po złożeniu rozprawy habilitacyjnej we wrześniu 2005 roku, zaczęłam analizować róż-
nice między dynamikami dopływu i odpływu. Praca [28], opublikowana w 2006 roku w
Physical Review E razem z moją doktorantką Sylwią Krupą, była pierwszą w serii prac
związanych z jednym z najważniejszych problemów w dziedzinie symulacji społecznych20.

17D. Stauffer, Sociophysics: the Sznajd model and its applications., Computer Physics Communications
146, 93?8 (2002).
18Z tego co wiem, oba terminy – inflow dynamics i ouflow dynamics – zostały wprowadzone przeze

mnie w [28], a obecnie są powszechnie używane w literaturze naukowej. Co więcej dyskusja dotycząca
różnic pomiędzy dynamikami nadal trwa, zobacz na przykład P. Roy, S. Biswas, P. Sen, Exit probability
in inflow dynamics: nonuniversality induced by range, asymmetry and fluctuation, Physical Review E 89,
030103 (2014) i C. Castellano, R. Pastor-Satorras, Irrelevance of information outflow in opinion dynamics
models, Physical Review E 83, 016113 (2011).
19C. Castellano, M.A.Muǹoz, R.Pastor-Satorras, Nonlinear q-voter model, Phys. Rev. E 80, 041129

(2009).
20Jak bowiem zauważyli Macy i Willer (From factors to actors: computational sociology and agent-
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Motywacją do tej pracy była sugestia, że zero-temperaturowa dynamika Glaubera (do-
pływu) i Sznajdów (odpływu) są równoważne przynajmniej w jednym wymiarze. Aby
systematycznie porównać obie dynamiki, wprowadziłyśmy nowy typ aktualizacji – aktu-
alizację częściowo synchroniczną. W ramach takiej aktualizacji, w każdym elementarnym
kroku czasowym, odwiedzamy wszystkie N węzłów i wybieramy każdego z prawdopodo-
bieństwem c jako kandydata do obrotu. Taka aktualizacja pozwala na płynne przejście
pomiędzy dwiema powszechnie stosowanymi aktualizacjami – sekwencyjną losową dla
c = 1/N oraz synchroniczną dla c = 1. Ten typ aktualizacji został wykorzystany póź-
niej przez Radicchi i innych do analizy łańcucha spinów Isinga w temperaturze T = 0
z algorytmem Metropolisa21 i przez nas dla łańcucha spinów Isinga z uogólnioną zero-
temperaturową dynamiką Glaubera [16]. W [28] wykorzystałyśmy między innymi metodę
mapowania łańcucha spinów Isinga na model dimerów (RSA) i pokazałyśmy, że nawet
już taka prosta metoda ujawnia różnicę pomiędzy dynamikami dopływu i odpływu. Po-
nadto, analizowałyśmy obie dynamiki pod wpływem częściowo synchronicznej aktualizacji
metodą symulacji Monte Carlo i wykazałyśmy jakościowe różnice pomiędzy obiema dy-
namikami.

Przy okazji okazało się, że aktualizacja częściowo synchroniczna wprowadza niezwykle
złożone zachowanie do prostego łańcuch spinów Isinga z uogólnioną zero-temperaturową
dynamika Glaubera. Ponadto okazało się, że analiza łańcuchów spinów Isinga z dyna-
miką Glaubera, szczególnie w przypadkach niskotemperaturowych, jest niezwykle inte-
resująca z punktu widzenia zastosowań w dziedzinie molekularnych nanomagnesów. W
roku 2001 po raz pierwszy zaobserwowano powolną magnetyzację w materiałach złożo-
nych z pojedynczych izolowanych łańcuchów magnetycznych. Co więcej okazało się, że
relaksacja takiego układu może być opisana przy pomocy, dotychczas czysto teoretycznej,
dynamiki Glaubera22. Warto również dodać, że układ spinów Isinga oziębiany z wyso-
kich temperatur do temperatury T = 0 wykazuje niezwykle interesujące zachowanie w
wyższych wymiarach, nawet w przypadku aktualizacji sekwencyjnej.23 Dlatego też, po-
stanowiłam pozostać przy tym temacie. W [1] analizowałam relaksację łańcucha spinów
Isinga z zero-temperaturową uogólnioną dynamiką Glaubera24 pod wpływem aktualizacji
synchronicznej. Wykorzystując symulacje Monte Carlo i metodę pola średniego, wykaza-
łam istnienie nieciągłego przejścia fazowego pomiędzy fazą ferro- i anty-ferromagnetyczną.
Przejście to zachodzi pod wpływem zmiany parametru W0, który w zero-temperaturowej
uogólnionej dynamice Glaubera określa prawdopodobieństwo obrotu spinu, w przypadku
gdy energia pozostaje stała (tzn. algorytm Metropolisa odpowiada W0 = 1 a oryginalna

based modeling., Annu. Rev. Sociol. 28, 143166, 2002), zbyt mało wysiłku poświęca się na analizę tego,
jak wyniki zależą od samej konstrukcji modelu.
21F. Radicchi, D. Vilone, and H. Meyer-Ortmanns, Phase Transition between Synchronous and Asyn-

chronous Updating Algorithms, J. Stat. Phys. 129, 593 (2007).
22P. Gambardella i inni, Ferromagnetism in one-dimensional monatomicmetal chains, Nature 416, 301-

304 (2002); A. Caneschi i inni Glauber slow dynamics of the magnetization in a molecular Ising chain,
Europhys. Lett. 58, 771–777 (2002)
23A. Lipowski, Anomalous phase-ordering kinetics in the Ising model, Physica A 268, 6-13 (1999); V.

Spirin, P. L. Krapivsky, S. Redner, Fate of zero-temperature Ising ferromagnets, Physical Review E 63,
036118 (2001)
24C . Godrèche, J. M. Luck, Metastability in zero-temperature dynamics: statistics of attractors, J.

Phys.: Condens. Matter 17, S2573–S2590 (2005)
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dynamika Glaubera W0 = 1/2). Wkrótce po publikacji mojej pracy w Physical Review
E, Yi i Kim opublikowali komentarz25, w którym powtórzyli i potwierdzili moje wyni-
ki dotyczące przejścia fazowego dla W0 = 1/2, ale dodatkowo przeprowadzili skalowanie
skończonych rozmiarów (finite-size scaling). Na podstawie tego skalowania, stwierdzili że
obserwowane przejście jest ciągłe, a nie jak twierdziłam w [1] nieciągłe. Faktycznie, zgod-
nie z klasycznym twierdzeniem Landaua, przejścia pierwszego rodzaju są niemożliwe w
równowagowych układach jednowymiarowych. Jednakże, zero-temperaturowa dynamika
Glaubera z aktualizacją synchroniczną nie jest równowagowa, a w statystycznej fizyce nie-
równowagowej znanych jest już kilka modeli, które wykazują nieciągłe przejścia fazowe w
jednym wymiarze, chociaż rzeczywiście nie są one tak powszechne jak przejścia ciągłe26.
Dlatego zdecydowałam raz jeszcze przyjrzeć się temu zagadnieniu, tym razem w przypad-
ku ogólniejszej, częściowo synchronicznej aktualizacji. Dwa lata później, razem z dwójką
moich studentów opublikowaliśmy kolejną pracę w Physical Review E poświęcono zero-
temperaturowej uogólnionej dynamice Glaubera w łańcuch spinów Isinga [16]. Potwierdzi-
liśmy w niej moje poprzednie przewidywania, że w przypadku aktualizacji synchronicznej
obserwowane przejście fazowe ferro-antyferromagnetyk jest nieciągłe. Zaobserwowane zo-
stały wszystkie trzy sygnatury nieciągłych przejść fazowych: (1) skok parametru porządku
(wykładnik krytyczny β = 0), (2) współistnienie faz i (3) histereza. Co więcej, pozostałe
wykładniki krytyczne okazały się być zgodne ze skalowaniem w układach skończonych
dla przejść pierwszego rodzaju, znalezionym analitycznie przez Fishera i Berkera, oraz w
ramach symulacji Monte Carlo przez Bindera i Landaua.27 Dodatkowo pokazaliśmy, że
dla każdego innego typu aktualizacji częściowo synchronicznej występuje ciągłe przejście
fazowe pomiędzy fazą ferromagnetyczną a tzw. aktywną.

Oprócz pracy poświęconej dynamice Glaubera (dopływu), zajęłam się też teoretyczną
analizą dynamiki odpływu w ramach ogólnego modelu q-wyborcy. W skrócie, w tym mo-
delu każda jednostka komunikuje się z panelem q sąsiadów (tzw. q-lobby). Jeśli wszystkie
q węzły mają taki sam stan (czyli q-lobby jest jednomyślne), wówczas wyborca przyjmuje
stan zgodny z q-lobby. W przeciwnym wypadku (czyli w przypadku braku porozumie-
nia), jak zaproponowano oryginalnie, wyborca zmienia swój stan na przeciwny z prawdo-
podobieństwem ε. W naszych późniejszych publikacjach rozważaliśmy jednak wyłącznie
przypadek ε = 0, jako naturalne uogólnienie modelu Sznajdów28.

Istnieją dwa szczególnie interesujące tematy związane z modelem q-wyborcy dla ε = 0.
Pierwszy, rozważany w pracach [11], [20] i [25], dotyczy niedawnej kontrowersji na temat
prawdopodobieństwa ucieczki E(x) w jednowymiarowym modelu q-wyborcy. Podczas gdy
dla liniowego modelu wyborcy i modelu Isinga z dynamiką Glaubera, E(x) = x jest do-

25I.G. Yi, B.J. Kim, Comment on Phase transition in a one-dimensional Ising ferromagnet at zero
temperature using Glauber dynamics with a synchronous updating mode, Phys. Rev. E 83, 033101 (2011).
26See e.g. M. Henkel, H. Hinrichsen, and S. Luebeck, Non-equilibrium Phase Transitions, Springer,

2008.
27M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite

systems, Phys. Rev. B 26, 2507 (1982); K. Binder and D. P. Landau, Finite-size scaling at first-order
phase transitions, Phys. Rev. B 30, 1477 (1984).
28W zakończeniu naszej pierwszej poświęconej modelowi Sznajdów, zaproponowaliśmy również taką

regułę jeśli nie wiesz co masz robić zrób cokolwiek, która odpowiada ε > 0, jakkolwiek wydaje się, że z
punktu widzenia nauk społecznych bardziej uzasadniona jest reguła jeśli nie wiesz co masz robić, nie rób
nic.
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kładnym wynikiem znalezionym analitycznie, w modelu q-wyborcy z q ­ 2 prawdopo-
dobieństwo ucieczki jest nieliniowe i jak dotąd nikomu nie udało się znaleźć analitycznej
postaci E(x) w sposób ścisły nawet dla q = 2 (co odpowiada modelowi Sznajdów).

Pierwsza próba analitycznego obliczenia E(x) została podjęta w 2008 roku niezależnie
przez naszą grupę [25] oraz Lambiotte i Rednera29. Korzystając z przybliżenia Kirkwooda,
otrzymaliśmy analitycznie formułę określającą prawdopodobieństwo ucieczki w przypad-
ku dowolnych warunków początkowych. Co zaskakujące, nasz wynik okazał się zgodny z
wynikami symulacji komputerowych, nawet dla takich przypadków, w których przybliże-
nie teoretycznie nie powinno działać. Ponadto, identyczna postać prawdopodobieństwa
ucieczki została otrzymana przez Lambiotte i Rednera. Mimo tego, trzy lata później Ga-
lam i Martins30 zasugerowali, że nasze wyniki są poprawne tylko w przypadku układów
o skończonym rozmiarze i dla układów nieskończonych prawdopodobieństwo ucieczki po-
winno być opisane funkcją schodkową, a nie krzywą typu S, jak znaleziono w [25].

Ponieważ nasze wcześniejsze obliczenia E(x) były jednak przybliżone, potraktowałam
tę sugestię poważnie i we współpracy z moimi studentami, wróciłam do tematu w 2011,
tym razem jednak w szerszym kontekście modelu q-wyborcy. Zaproponowana przez nas w
pracy [20] analityczna formuła dla E(x) dla ogólnego modelu q-wyborcy, została potwier-
dzona w późniejszych publikacjach dla q = 2, ale zakwestionowana dla q > 2 w przypadku
większych sieci. Pokazano jednak, że z pewnością E(x) ma postać funkcji schodkowej jedy-
nie na grafie zupełnym, a nie w przypadku łańcucha. Jeśli chodzi o dokładną analityczną
postać E(x) dla q > 2, problem nie został jeszcze definitywnie rozwiązany i nadal stanowi
temat dyskusji w literaturze31.

Drugi temat w tym obszarze badań związany jest z przejściami fazowymi w uogól-
nionym modelu q-wyborcy. W podstawowym modelu, podobnie jak w modelu Sznajdów,
jedynym typem odpowiedzi na wpływ społeczny był tzw. konformizm, który z punktu
widzenia fizyki przypomina oddziaływanie ferromagnetyczne. Jednakże, w prawdziwych
układach społecznych konformizm nie jest jedynym typem odpowiedzi. Innym, powszech-
nie uznawanym, jest non-konformizm, który zgodnie z psychologią społeczną może ozna-
czać:

• Niezależność – odporność na wpływ, tzn. decyzje podejmowane są niezależnie od
wpływu grupy. W tym sensie niezależność odgrywa podobną rolę co temperatura
[14].

• Anty-konformizm – bunt wobec wpływu. Według psychologów, anty-konformiści są
podobni do konformistów w tym sensie, że jedni i drudzy biorą pod uwagę opinie
grupy (lub normę społeczną) – konformiści się z nią zgadzają, a anty-konformiści
nie.

Wprowadzenie któregokolwiek rodzaju non-konformizmu do podstawowego modelu q-
wyborcy powoduje pojawienie się przejścia fazowego pomiędzy fazą z magnetyzacją m 6= 0

29R. Lambiotte, S. Redner, Dynamics of non-conservative voters, Europhys. Lett. 82, 18007 (2008).
30S. Galam, A.C.R. Martins, Pitfalls driven by the sole use of local updates in dynamical systems,

Europhys. Lett. 95, 48005 (2011).
31[11] i A.M. Timpanaro, C.P.C. Prado, Exit probability of the one-dimensional q-voter model: Analytical

results and simulations for large networks, Phys. Rev. E 89, 052808 (2014).
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(interpretowaną w tego typu modelach jako opinia publiczna) i fazą status-quo (m = 0).
W pracy [19] wprowadziliśmy niezależność, a w [18] anty-konformizm w przypadku modelu
Sznajdów, co odpowiada modelowi q-wyborcy z q = 2.

W [17] rozważaliśmy uogólniony model q-wyborcy z dwoma typami non-konformizmu
dla dowolnej wartości q. Motywacją do tej pracy stało się zadane przeze mnie pytanie,
dotyczące różnic pomiędzy dwoma typami non-konformizmu. Chociaż różnice te są bar-
dzo ważne z punktu widzenia psychologii społecznej i widoczne na poziomie mikrosko-
powym, mogą być bez znaczenia z punktu widzenia fizyka, w tym sensie, że makrosko-
powe zachowanie układu będzie jakościowo takie samo dla obu typów non-konformizmu.
Prawdę mówiąc intuicja mojego doktoranta (współautora pracy) była taka, że rodzaj
non-konformizmu nie ma znaczenia, a ja miałam nadzieje, że różnice się jednak ujaw-
nią. Dlatego rozważyliśmy dwa modele – model q-wyborcy z niezależnością i model q-
wyborcy z anty-konformizmem. Ograniczyliśmy naszą analizę do przypadku grafu zupeł-
nego, co pozwoliło uzyskać dokładne wyniki analityczne i zastosować do opisu teorię Lan-
daua. W rezultacie stwierdziliśmy jednoznacznie, że istnieją znaczne różnice jakościowe
pomiędzy tymi dwoma modelami. Chociaż w obu modelach zaobserwowaliśmy przejście
fazowe pod wpływem parametru p, określającym prawdopodobieństwo zachowania non-
konformistycznego (anty-konformistycznego lub niezależnego w zależności od modelu), to
charakter przejścia był różny dla obu modeli nawet na grafie zupełnym. W szczególności
pokazaliśmy, że w modelu z anty-konformizmem krytyczna wartość zaburzenia p rosnie
z q, podczas gdy w modelu z niezależnością krytyczna wartość zaburzenia p maleje z q.
Ponadto, w przypadku modelu z anty-konformizmem przejście fazowe jest ciągłe dla do-
wolnej wartości q, zaś w modelu z niezależnością charakter przejścia zmienia się z ciągłego
na nieciągłe dla q = 6. Ten ostatni wynik jest szczególnie interesujący z punktu widzenia
nauk społecznych, potwierdzając fakt, że niezależność prowadzi do bardziej rewolucyjnych
zmian niż anty-konformizm. Mam nadzieje, że wyniki te będą również istotne dla całe-
go obszaru modelowania dynamiki opinii, ponieważ wcześniej problem różnic pomiędzy
dwoma typami non-konformizmu był zaniedbywany a nawet niedostrzegany.

Następna praca w tej serii, [14], została napisana na zaproszenie prof. Sidneya Rednera
i opublikowana w specjalnym tomie Statistical Mechanics and Social Sciences czasopisma
Journal of Statistical Physics. W tej pracy przeprowadziliśmy dalsze badania dotyczące
różnic pomiędzy dwoma typami non-konformizmu, tym razem w kontekście ogólniejszego
modelu q-wyborcy z progiem. Ten uogólniony model został zaproponowany przez moje-
go doktoranta, Piotra Nyczkę, w celu opisania sytuacji gdy nie jest potrzebna całkowita
jednomyślność aby zmienić przekonania wyborcy. Zaproponowany przez niego model przy-
pomina, znany z nauk społecznych tzw. model progowy (threshold model), ale zasadnicza
różnica między modelami polega na tym, że w naszej pracy rozważaliśmy (1) dynamikę
odpływu, podczas gdy w modelu progowym mamy do czynienia z dynamiką dopływu, (2)
grupa q osób wpływa na wyborcę, a nie wszyscy jego sąsiedzi, jak ma to zwykle miejsce
w modelach progowych. Z mojego punktu widzenia, wprowadzony przez Piotra model,
był znakomitym pretekstem do sprawdzenia czy oba typy niezależności różnią się jedy-
nie w przypadku reguły jednomyślności czy może dla dowolnego progu. Ponownie więc
rozważyliśmy dwie wersje modelu i okazało się, że różnice pomiędzy dwoma typami non-
konformizmu są widoczne dopiero wówczas gdy, próg większościowy przekroczy wartość
3q/4. Ta wartość zaskakująco zgadza się z wynikami eksperymentów społecznych, które
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wskazują na to, że o jednomyślności można już mówić w przypadku gdy 75% osób ma to
samo zdanie.

W moim odczuciu praca [14] jest ważna nie tylko ze względu na nowe wyniki teoretycz-
ne. Ponieważ publikacja miała się ukazać w tomie specjalnym, a edytorami byli zarówno
fizycy jak i przedstawiciel nauk społecznych, postanowiłam poświęcić sporą część arty-
kułu (ostatecznie pięć rozdziałów, 10 stron) na osobisty przegląd literatury dotyczącej
dynamiki opinii. Moim celem było przybliżenie literatury i wiedzy, z zakresu nauk spo-
łecznych, fizykom zajmującym się dynamiką opinii, a jednocześnie opisać pewne użyteczne
w tej dziedzinie koncepcje fizyczne w sposób zrozumiały dla przedstawicieli nauk społecz-
nych. Mam nadzieję, że mi się to udało – chociaż praca jest bardzo młoda, już doczekała
się 29 cytowań według Google Scholar i 9 cytowań (bez autocytowań) według Web of
Science. Ponadto, krótko po publikacji tego artykułu, zostałam zaproszona do udziału
w kilku prestiżowych wydarzeniach. W szczególności, zostałam zaproszona do poprowa-
dzenia tutorialu na Zjeździe Niemieckiego Towarzystwa Fizycznego (Spring Meeting of
the German Physical Society in Berlin 2015)32, plenarnego wykładu na VII Konferencji
Akademickiego Stowarzyszenia Psychologii Ekonomicznej w Szkole Wyższa Psychologii
Społecznej (SWPS) oraz wykłoszenia wykładu inaugurującego rok akademicki na wro-
cławskim wydziale SWPS w październiku 2014.

Pytanie: Czy szczegóły założeń, dotyczących modelowania oddziaływań społecznych na
poziomie mikroskopowym, mają wpływ na zachowanie układu jako całości, czy też nie?,
które było inspiracją poprzednich prac, było również motywacją do najnowszej pracy w
serii [9], opublikowanej w PLoS ONE i poświęconej słynnej psychologicznej debacie Oso-
bowość czy sytuacja? Debata rozpoczęła się w późnych latach sześćdziesiątych i odnosi się
do kontrowersji dotyczącej tego, czy osobowość czy może sytuacja jest bardziej istotna dla
przewidzenia zachowania danej osoby. Zaproponowaliśmy, a następnie przeanalizowaliśmy,
dwa warianty (osobowość lub sytuacja) tego samego modelu agentowego, konkretnie mo-
delu q-wyborcy z niezależnością. W efekcie pokazaliśmy, że decyzja o wyborze wariantu
osobowość (tzn. pewna frakcja p agentów to na stałe niezależni, a pozostali to konformiści)
albo sytuacja (z prawdopodobieństwem p każdy agent zachowuje się niezależnie, a z 1− p
jak konformista) ma kolosalne znaczenie z punktu widzenia makroskopowego zachowania
układu, nawet w przypadku grafu zupełnego. Wydaje mi się, że ten wynik powinien mieć
daleko idące konsekwencje, także poza modelowaniem dynamiki opinii, ponieważ w ostat-
nich latach modelowanie agentowe nie tylko staje się coraz popularniejszym narzędziem
w naukach społecznych, ale jest nawet często traktowane jako substytut prawdziwych
eksperymentów.

Moim zdaniem, rozważane w pracy [9] zagadnienie jest również interesujące z fizycz-
nego punku widzenia, ponieważ relacja osobowość kontra sytuacja przypomina związek
między podejściem typu quenched i annealed, analizowany tradycyjnie w odniesieniu do
układów spinowych, a ostatnio coraz bardziej popularnym w dziedzinie sieci złożonych.
Jedna z metod analitycznych stosowana w tej dziedzinie, tak zwane heterogeniczne pole
średnie, polega na zastąpieniu prawdziwej (quenched) sieci, w której dane połączenie ist-
nieje lub nie, przez graf zupełny z odpowiednimi wagami połączeń (annealed).33 Pytanie,

32Niestety z powodu wypadku i w efekcie złamanej nogi, musiałam odwołać ten wyjazd.
33See e.g. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Critical phenomena in complex networks,

Rev. Mod. Phys. 80, 12751335 (2008).
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które się natychmiast narzuca, dotyczy tego, czy faktycznie można dokonać takiej zamia-
ny tzn. czy te oba podejścia są równoważne34. Odpowiedź wcale nie jest oczywista i zależy
od badanego układu.

2.2 Informacje o opiece naukowej i kształceniu mło-
dej kadry

Od początku mojej pracy akademickiej dużą wagę przywiązywałam do zajęć dydaktycz-
nych i współpracy ze studentami. W trakcie pracy na Uniwersytecie Wrocławskim (do
września 2013 roku), oprócz standardowych zajęć znajdujących się w programie stu-
diów (Mechanika teoretyczna, Fizyka statystyczna, Modelowanie komputerowe czy Teo-
ria przejść fazowych), prowadziłam również kursy wybieralne, które cieszyły się wśród
studentów dużą popularnością (w tym kurs po angielsku Nonlinear dynamics i wykład
Nierównowagowe przejścia fazowe). Szczególnie dobrze wspominam autorskie seminarium
Egzotyczna fizyka statystyczna, prowadzone przeze mnie w latach 2000-2001 i wprowadza-
jące studentów w nową dziedzinę interdyscyplinarnych zastosowań fizyki statystycznej.
Seminarium, pomimo że nieobowiązkowe (tzn. nie znajdujące się w planie studiów) przy-
ciągnęło kilkunastu studentów lat 3-5 fizyki doświadczalnej, teoretycznej i komputerowej.
Od tamtego momentu wielokrotnie miałam przyjemność współpracy ze studentami (mię-
dzy innymi z Karolem Suszczyńskim, Rafałem Topolnickim, Maciejem Tabiszewskim i
Marcinem Wolańskim) co zaowocowało kilkoma publikacjami naukowymi w prestiżowych
czasopismach z listy JCR: ([10], [11], [16], [19], [20], [33]). Za moje zaangażowanie w
działalność dydaktyczną zostałam wyróżniona w roku 2011 Medalem Komisji
Edukacji Narodowej

W duchu rozwijania pasji i tworzenia Nauki prowadzony był również autorski kurs
Modelarnia – krytyczność i złożoność (60 godzin w semestrze). Zajęcia te, które odby-
wały się na Uniwesytecie Wrocławskim w latach 2012-2013 w ramach projektu ”Rozwój
potencjału i oferty edukacyjnej Uniwersytetu Wrocławskiego szansą zwiększenia konku-
rencyjności Uczelni”, miały nowoczesną formę interaktywną. Stosowane były takie metody
dydaktyczne jak dyskusje, burze mózgów, prezentacje (indywidualne i grupowe), ćwiczenia
numeryczne i rachunkowe. W trakcie zajęć studenci mieli okazję nie tylko zapoznania się
z nowymi ideami modelowania układów złożonych i nierównowagowych przejść fazowych,
ale również uczestniczenia w procesie badawczym od narodzin modelu, poprzez przegląd
literaturowy, analizę modelu metodami numerycznymi i analitycznymi aż po prezentację
wyników (w formie referatu i publikacji).

W latach 1999-2014 byłam opiekunem 25 prac dyplomowych (w tym 20 magisterskich)
na Uniwersytecie Wrocławskim. W tym samym okresie byłam również recenzentem ponad
30 prac magisterskich na UWr i NTNU (Trondheim, Norwegia). Ponadto byłam promoto-
rem w trzech przewodach doktorskich z nauk fizycznych (dwa zakończone, jeden otwarty),
a w latach 2011-2014 recenzentem czterech rozpraw doktorskich, więcej szczegółów w roz-
dziale 3.5.2.
34A.N. Malmi-Kakkada, O.T. Valls, Ch. Dasgupta, Ising model on a random network with annealed or

quenched disorder, Physical Review B 90, 024202 (2014).
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W 2013 roku podjęłam decyzję o zmianie miejsca pracy i od października 2013 jestem
zatrudniona na Wydziale Podstawowych Problemów Techniki, Politechniki Wrocławskiej.
Tu, ze względu na znacznie większą liczbę studentów, mogę jeszcze intensywniej realizować
się jako nauczyciel akademicki. Poza prowadzonymi kursami z fizyki, od listopada 2013
mam przyjemność być współopiekunką (wraz z prof. Antonim Mitusiem) koła naukowego
fizyków Nabla. W ramach spotkań koła, zorganizowałam w roku akademickim 2013/2014
cykl wykładów poświęconych układom złożonym a w roku 2014 rozpoczęłam zajęcia z
symulacji komputerowych, przerwane w 2015 ze względów zdrowotnych35.

2.3 Informacja o działalności popularyzatorskiej i or-
ganizacyjnej

Poza pracą naukową i dydaktyczną, sporo czasu i zaangażowania poświęcałam zawsze
pracy organizacyjnej i popularyzacji nauki. Brałam udział w organizacji dziewięciu mię-
dzynarodowych konferencji naukowych, będąc kierownikiem trzech z nich. Za szczególnie
ważną uważam, zorganizowaną przeze mnie w 2011 roku, 47. Zimową Szkołę Fizyki Teo-
retycznej Simple Models for Complex Systems. Szkoła miała na celu nie tylko przekazanie
młodym ludziom wiedzy związanej ze stosunkowo nową, intensywnie rozwijającą się i
wysoce interdyscyplinarną dziedziną układów złożonych, ale również integrację środowi-
ska akademickiego. Wykładowcami na Szkole było 12 uczonych z całego świata, którzy
nie tylko są wybitnymi specjalistami w swojej dziedzinie, ale również znakomitymi dy-
daktykami umiejącymi wprowadzić nowicjuszy w fascynujący, interdyscyplinarny Świat
Układów Złożonych. Za osobisty sukces uważam fakt, że ze względu na wysoce interdy-
scyplinarny charakter szkoły na udział w spotkaniu zdecydowali się nie tylko fizycy, ale
również matematycy, informatycy, ekonomiści oraz przedstawiciele nauk społecznych. W
sumie w Szkole wzięło udział 75 osób z całego świata.

Idea przekraczania podziałów między różnymi, często pozornie niezwykle odległymi
dziedzinami, przyświeca również od samego początku katedrze UNESCO Studiów Interdy-
scyplinarnych na Uniwersytecie Wrocławskim (http://www.kusi.ift.uni.wroc.pl). W latach
2011-2013 miałam zaszczyt być przewodniczącą Rady Katedry. Pierwszym przewodniczą-
cym i jej pomysłodawcą był prof. Andrzej Pękalski, którego marzeniem było stworzenie
interdyscyplinarnego ośrodka badawczo-edukacyjnego o zasięgu międzynarodowym. Pod-
stawową formą działalności Katedry były seminaria interdyscyplinarne oraz związana z
nimi praca naukowa, dotycząca głównie zagadnień wymagających współdziałania eks-
pertów z różnych dziedzin. Ponadto Katedra była współorganizatorem kilku konferencji
naukowych, w tym Workshop on Science for Conservation & Preservation of Cultural He-
ritage Research & Education (2007) z Wydziałem Chemii Uniwersytetu Wrocławskiego
oraz XXIII Sympozjum Maksa Borna Critical Phenomena in Complex Systems (2007) z
Instytutem Fizyki Teoretycznej Uniwersytetu Wrocławskiego.

W roku 2013 byłam współorganizatorem konferencji Cultural and Opinion Dynamics:
Modeling, Experiments and Challenges for the Future (CODYM). Konferencja odbyła się

35W grudniu 2014 uległam wypadkowi narciarskiemu, co skutkowało operacją i kilkumiesięczną reha-
bilitacją.
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we wrześniu 2013 roku w Barcelonie jako satelita 13. Europejskiej Konferencji Układów
Złożonych (ECCS 2013). Muszę podkreślić, że ta konferencja była już prawdziwie inter-
dyscyplinarna. Nie tylko uczestnicy pochodzili z tak odległych dziedzin jak matematyka,
fizyka, informatyka, socjologia, psychologia czy lingwistyka, ale również nasz pięcioosobo-
wy Komitet Organizacyjny składał się zarówno z przedstawicieli nauk społecznych jak i
ścisłych. W ramach kontunuacji tego interdyscyplinarnego wydarzenia, w kwietniu 2014
zorganizowałam workshop CODYM-Spring’14, w którym wzięli udział naukowcy z róż-
nych dziedzin z całego świata. W kolejnych latach, w ramach międzynarodowej inter-
dyscyplinarnej współpracy z Timoteo Carletti (Belgia), Guillaume Deffuant (Francja),
Floriana Gargiulo (Belgia), Anrea Guazzini (Włochy), Sylvie Huet (Francja) i Pawłem
Sobkowiczem (Polska), zamierzamy kontynuować organizację spotkań CODYM.

Jednym z moich ulubionych zajęć związanych z życiem akademickim jest populary-
zacja nauki. Od zawsze byłam aktywna w tej dziedzinie, przede wszystkim wygłaszając
wykłady dla laików, między innymi na Uniwersytecie Trzeciego Wieku, na posiedzeniu
klubu Lions , szkołach i przede wszystkim w ramach Dolnośląskiego Festiwalu Nauki
(patrz rozdział 3.5.6). Jestem również autorem kilku artykułów popularnonaukowych, z
czego trzech opublikowanych w popularnym miesięczniku Wiedza i Życie.
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Rozdział 3

Ankieta osiągnięć naukowych

3.1 Informacja o osiągnięciach i dorobku naukowym

3.1.1 Informacja o cytowaniach

Liczba cytowań moich prac wg. bazy Web of Science (stan bazy na dzień 31.03.2015)
wynosi 914 bez autocytowań, a indeks Hirscha 12.1

Ponadto moje publikacje były również wielokrotnie (ok. 100 razy wg. Google Books)
cytowane w monografiach, między innymi w:

• Parongama Sen, Bikas K. Chakrabarti, Sociophysics: An Introduction, Oxford Uni-
versity Press (2013)

• Francisek Slanina, Essentials of Econophysics Modelling, Oxford University Press
(2013)

• Serge Galam, Sociophysics: A Physicist’s Modeling of Psycho-political Phenomena,
Springer (2012)

• Willi-Hans Steeb, The Nonlinear Workbook: Chaos, Fractals, Cellular Automata,
Neural Networks, World Scientific (2011)

• Rodolfo Baggio, Jane Klobas, Quantitative Methods in Tourism, Channel View Pu-
blications (2011)

• Tom Siegfried, A Beautiful Math: John Nash, Game Theory, and the Modern Quest
for a Code of Nature, National Academies Press (2006)

• Dietrich Stauffer et al., Biology, Sociology, Geology by Computational Physicists,
Elsevier (2006)

• Sergio Albeverio, Volker Jentsch, Holger Kantz, Extreme Events in Nature and So-
ciety, Springer (2006)

1Wykluczono te prace cytujące, w których pojawia się chociaż jeden z autorów pracy cytowanej.
Indeks Hirscha podany jest według bazy Web of Science (liczony z autocytowaniami, wyłącznie dla prac
indeksowanych w bazie WoS).
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• Philip Ball, Critical Mass: How One Thing Leads to Another, Macmillan (2006)

• David P. Landau, Kurt Binder, A Guide to Monte Carlo Simulations in Statistical
Physics, Cambridge University Press (2002)

3.1.2 Autorskie artykuły naukowe w czasopismach indeksowa-
nych w JCR

Wykaz autorskich artykułów naukowych w czasopismach z listy filadelfijskiej wraz z ak-
tualnymi wartościami 2 i 5-letnich wskaźników impact factor (odpowiednio IF2Y i IF5Y );
z raportu JCR opublikowanego w 2014 r. oraz liczbą cytowań CY T według bazy Web
of Science (stan bazy na dzień 31.03.2015) bez autocytowań (tzn. wykluczono te prace
cytujące, w których pojawia się chociaż jeden z autorów pracy cytowanej):

[1] K. Sznajd-Weron, Phase transition in a one-dimensional Ising ferromagnet at zero
temperature using Glauber dynamics with a synchronous updating mode, Phys. Rev.
E 82, 031120 (2010); [IF2Y = 2.326, IF5Y = 2.302, CY T = 2]

[2] K. Sznajd-Weron, Sznajd model and its applications, Acta Physica Polonica B 36
(2005); [IF2Y = 0.998, IF5Y = 0.742, CY T = 65]

[3] K. Sznajd-Weron, Metastabilities in the degenerated phase of the two-component
model, Phys. Rev. E 72, 026109 (2005); [IF2Y = 2.326, IF5Y = 2.302, CY T = 0]

[4] K. Sznajd-Weron, Mean-field results for the two-component model, Phys. Rev. E 71,
046110 (2005); [IF2Y = 2.326, IF5Y = 2.302, CY T = 1]

[5] K. Sznajd-Weron, Dynamical model of Ising spins, Phys. Rev. E 70, 037104 (2004);
[IF2Y = 2.326, IF5Y = 2.302, CY T = 13]

[6] K. Sznajd-Weron, Controlling simple dynamics by a disagreement function, Phys.
Rev. E 66, 046131 (2002); [IF2Y = 2.326, IF5Y = 2.302, CY T = 19]

[7] K. Sznajd-Weron, Instabilities in population dynamics, Eur. Phys. J. B 16, 183
(2000); [IF2Y = 1.463, IF5Y = 1.515, CY T = 7]

[8] K. Sznajd-Weron, Change of a continuous character caused by gene flow. An analy-
tical approach, Physica A 264, 432 (1999); [IF2Y = 1.772, IF5Y = 1.684, CY T = 0]

3.1.3 Współautorskie artykuły naukowe w czasopismach indek-
sowanych w JCR

[9] K. Sznajd-Weron, J. Szwabiński, R. Weron, ”Is the Person-Situation Debate Impor-
tant for Agent-Based Modeling and Vice-Versa?” PLoS ONE 9(11), e112203 (2014);
[IF2Y = 3.543, IF5Y = 4.015, CY T = 0]
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[10] A. Kowalska-Pyzalska, K. Maciejowska, K. Suszczyński, K. Sznajd-Weron, R. We-
ron, Turning green: Agent-based modeling of the adoption of dynamic electricity
tariffs, Energy Policy 72, 164-174 (2014); [IF2Y = 2.696, IF5Y = 3.402, CY T = 1]

[11] K. Sznajd-Weron, K. Suszczyński, Nonlinear q-voter model with deadlocks on the
Watts-Strogatz graph, J. Stat. Mech. P07018 (2014); [IF2Y = 2.056, IF5Y = 1.914, CY T =
0]

[12] K. Sznajd-Weron, J. Szwabiński, R. Weron, T. Weron, Rewiring the network. What
helps an innovation to diffuse?, J. Stat. Mech. P03007 (2014); [IF2Y = 2.056, IF5Y =
1.914, CY T = 1]

[13] P. Przybyła, K. Sznajd-Weron, R. Weron, Diffusion of innovation within an agent-
based model: Spinsons, independence and advertising, Advances in Complex Systems
17, 1450004 (2014); [IF2Y = 0.786, IF5Y = 0.918, CY T = 0]

[14] P. Nyczka, K. Sznajd-Weron, Anticonformity or Independence? – Insights from
Statistical Physics, Journal of Statistical Physics 151, 174-202 (2013); [IF2Y =
1.284, IF5Y = 1.239, CY T = 9]

[15] A. Kowalska-Styczeń, K. Sznajd-Weron, Access to information in word of mouth
marketing within a cellular automata model, Advances in Complex Systems 15,
1250080 (2012); [IF2Y = 0.786, IF5Y = 0.918, CY T = 1]

[16] B. Skorupa, K. Sznajd-Weron, R. Topolnicki, Phase diagram for a zero-temperature
Glauber dynamics under partially synchronous update, Phys. Rev. E 86, 051113
(2012); [IF2Y = 2.326, IF5Y = 2.302, CY T = 0]

[17] P. Nyczka, K. Sznajd-Weron, J. Cislo, Phase transitions in the q-voter model with
two types of stochastic driving, Physical Review E 86, 011105 (2012); [IF2Y =
2.326, IF5Y = 2.302, CY T = 8]

[18] P. Nyczka, K. Sznajd-Weron, J. Cisło, Opinion dynamics as a movement in a bistable
potential, Physica A 391, 317-327 (2012); [IF2Y = 1.772, IF5Y = 1.684, CY T = 1]

[19] K. Sznajd-Weron, M. Tabiszewski, A. Timpanaro, Phase transition in the Sznajd
model with independence, Europhys. Lett. 96, 48002 (2011); [IF2Y = 2.269, IF5Y =
2.112, CY T = 10]

[20] P. Przybyła, K. Sznajd-Weron and M. Tabiszewski, Exit probability in a one-dimen-
sional nonlinear q-voter model, Phys. Rev. E 84, 031117 (2011); [IF2Y = 2.326, IF5Y =
2.302, CY T = 7]

[21] G. Kondrat, K. Sznajd-Weron, Spontaneous reorientations in a model of opinion
dynamics with anticonformists, Int. J. Mod. Phys. C 21, 559-566 (2010); [IF2Y =
1.125, IF5Y = 0.949, CY T = 4]
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[22] T. Czarnik, R. Gawda, W. Kołodziej, D. Łątka, K. Sznajd-Weron, R. Weron, Asso-
ciations between intracranial pressure, intraocular pressure and mean arterial pres-
sure in patients with traumatic and non-traumatic brain injuries, Injury, Int. J. Care
Injured 40, 33 (2009); [IF2Y = 2.462, IF5Y = 2.388, CY T = 9]

[23] G. Kondrat, K. Sznajd-Weron, Percolation framework in Ising-spin relaxation, Phys.
Rev. E 79, 011119 (2009); [IF2Y = 2.326, IF5Y = 2.302, CY T = 3]

[24] K. Sznajd-Weron, R. Weron, M. Włoszczowska, Outflow dynamics in modeling oli-
gopoly markets: the case of the mobile telecommunications market in Poland, J. Stat.
Mech. P11018 (2008); [IF2Y = 2.056, IF5Y = 1.914, CY T = 1]

[25] F. Slanina, K. Sznajd-Weron, P. Przybyła, Some new results on one-dimensional
outflow dynamics, Europhys. Lett. 82, 18006 (2008); [IF2Y = 2.269, IF5Y = 2.112, CY T =
18]

[26] G. Kondrat, K. Sznajd-Weron, Three types of outflow dynamics on square and
triangular lattices and universal scaling, Phys. Rev. E 77, 021127 (2008); [IF2Y =
2.326, IF5Y = 2.302, CY T = 3]

[27] T. Czarnik, R. Gawda, D. Łątka, W. Kołodziej, K. Sznajd-Weron, R. Weron, Noni-
nvasive measurement of intracranial pressure: Is it possible?,The Journal of Trauma,
Injury Infection and Critical Care, 62(1), 207-211 (2007); [IF2Y = 2.961, IF5Y =
3.204, CY T = 9]

[28] K. Sznajd-Weron, S. Krupa, Inflow versus outflow zero-temperature dynamics in one
dimension, Phys. Rev. E 74, 031109 (2006); [IF2Y = 2.326, IF5Y = 2.302, CY T = 8]

[29] S. Krupa, K. Sznajd-Weron, Relaxation under outflow dynamics with random se-
quential updating, Int. J. Mod. Phys. C , Vol. 16, No. 11, 1771 (2005); [IF2Y =
1.125, IF5Y = 0.949, CY T = 9]

[30] K. Sznajd-Weron, J. Sznajd, Who is left, who is right?, Physica A 351, 593 (2005);
[IF2Y = 1.772, IF5Y = 1.684, CY T = 23]

[31] J.O. Indekeu, K. Sznajd-Weron, Hierarchical population model with a carrying ca-
pacity distribution for bacterial biofilms, Phys. Rev. E 68, 061904 (2003); [IF2Y =
2.326, IF5Y = 2.302, CY T = 1]

[32] K. Sznajd-Weron, R. Weron, How effective is advertising in duopoly markets?, Phy-
sica A 324, 437 (2003); [IF2Y = 1.772, IF5Y = 1.684, CY T = 36]

[33] K. Sznajd-Weron, M. Wolański, In search for the optimal strategy in population
dynamics, Eur. Phys. J. B 25 2, 253 (2002); [IF2Y = 1.463, IF5Y = 1.515, CY T = 5]

[34] K. Sznajd-Weron, R. Weron, A simple model of price formation, Int. J. Mod. Phys.
C 13, 115 (2002); [IF2Y = 1.125, IF5Y = 0.949, CY T = 54]
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[35] K. Sznajd-Weron, A. Pękalski, Model of population migration in a changing habitat,
Physica A 294, 424 (2001); [IF2Y = 1.772, IF5Y = 1.684, CY T = 2]

[36] K. Sznajd-Weron, R. Weron, A new model of mass extinctions, Physica A 293, 559
(2001); [IF2Y = 1.772, IF5Y = 1.684, CY T = 3]

[37] A. Pękalski, K. Sznajd-Weron, Population dynamics with and without selection,
Phys. Rev. E 63, 031903 (2001); [IF2Y = 2.326, IF5Y = 2.302, CY T = 5]

[38] K. Sznajd-Weron, J. Sznajd, Opinion evolution in closed community, Int. J. Mod.
Phys. C 11, 1157 (2000); [IF2Y = 1.125, IF5Y = 0.949, CY T = 513]

[39] K. Sznajd-Weron, A. Pękalski, Statistical physics model of an evolving population,
Physica A 274, 91 (1999); [IF2Y = 1.772, IF5Y = 1.684, CY T = 3]

[40] K. Sznajd-Weron, A.Pękalski, Evolution of populations in a changing environment,
Physica A 269, 527 (1999); [IF2Y = 1.772, IF5Y = 1.684, CY T = 1]

[41] K. Sznajd-Weron, A. Pękalski, Change of a continuous character caused by gene
flow. A Monte Carlo study, Physica A 259, 457 (1998); [IF2Y = 1.772, IF5Y =
1.684, CY T = 2]

[42] K. Sznajd-Weron, A. Pękalski, Evolution through stabilizing selection and gene flow,
Physica A 252, 336 (1998); [IF2Y = 1.772, IF5Y = 1.684, CY T = 1]

[43] I. Mróz, A. Pękalski, K. Sznajd-Weron, Conditions for adaptation of an evolving
population, Phys. Rev. Lett. 76 3025 (1996); [IF2Y = 7.728, IF5Y = 7.411, CY T =
14]

3.1.4 Publikacje konferencyjne

1. K. Sznajd-Weron, J. Sznajd (2006) Personal Versus Economic Freedom, Proceedings
of the Third Nikkei Econophysics Symposium Practical Fruits of Econophysics, H.
Takayasu Ed., Springer-Verlag, Tokyo 355-360.

2. A. Kowalska-Pyzalska, K. Maciejowska, K. Sznajd-Weron, R.Weron (2014) Modeling
consumer opinions towards dynamic pricing: An agent-based approach, IEEE Con-
ference Proceedings, 11th International Conference on the European Energy Market
(EEM’14), 28-30 May 2014, Kraków, Poland, DOI 10.1109/EEM.2014.6861272.

3.1.5 Członkostwo w redakcjach naukowych

1. K. Sznajd-Weron, ed. (2004) Statistical Physics outside pure Physics Physica A 336

2. A. Pękalski, K. Sznajd-Weron, eds. (2000) Exotic Statistical Physics, Physica A 285

3. R. Kutner, A. Pękalski, K. Sznajd-Weron, eds. (1999) Anomalous Diffusion: From
Basics to Applications, Lecture Notes in Physics, Springer-Verlag, Berlin.
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3.2 Informacja o aktywności naukowej

3.2.1 Informacja o udziale w konferencjach naukowych

Wykłady zaproszone i plenarne

1. Czy modelowanie agentowe może zastąpić eksperyment społeczny?,Wykład plenar-
ny na VII Konferencji Akademickiego Stowarzyszenia Psychologii Ekonomicznej,
Szkoła Wyższa Psychologii Społecznej, Wrocław 09-10.05.2014

2. Agent Based Modeling in Energy Markets, 2nd Energy Finance Christmas Workshop,
Macquarie University, Sydney, 13-14.12.2012

3. Phase transition in the Sznajd model with nonconformity, The Unexpected Confe-
rence – SOCIOPHYSICS: Do humans behave like atoms?, CREA-Ecole Polytech-
nique, Paris, 13-16.11.2011

4. Simple models for complex systems – toys or tools?, 6-cio godzinny mini kurs na
Ising Lectures 2011, 14th Annual Workshop on Phase Transitions and Critical Phe-
nomena, Lviv, 11-15.04.2011

5. Can we treat people like particles? - a simple model of opinion formation, Internatio-
nal Symposium Computational philosophy: lessons from simple models, Niels Bohr
Institute, Copenhagen 11-13.10.2007

6. Opinion dynamics in personal and economical areas do they differ?, International
School on Complexity Statistical Physics of Social Dynamics: Opinions, Semiotic
Dynamics, and Language, Erice (Sicily) 14-19.07.2007

7. From social psychology to sociology - a physicist’s point of view, AKSOE Conference
Physics of socio-economic Systems, Regensburg 27.03.2007

8. Personal versus economic freedom, AKSOE Conference Physics of Socio-economic
Systems, Dresden 26-31.03.2006

9. Opinion evolution in sociophysics, XI Summer School Fundamental Problems in
Statistical Physics FPSPXI, Leuven 04-17.09.2005

10. Kto jest prawicą, kto jest lewicą?, IX Mini Sympozjum z Fizyki Statystycznej, Czę-
stochowa 05-06.12.2004

11. Sznajd model and its applications, Sympozjum FENS’04, Warszawa 19-20.11.2004

12. Personal versus economic freedom, 3rd Nikkei Econophysics Workshop, Tokyo 09-
11.11.2004

13. Fizyka poza fizyką, wykład plenarny na XXXVII Zjeździe Fizyków Polskich, Gdańsk
15-18.09.2003
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Wybrane referaty i postery konferencyjne

1. Zestawienie referatów konferencyjnych typu contributed zawiera m.in.:

(a) Diffusion of innovation within an agent-based model, European Conference on
Complex Systems (ECCS’13), Barcelona 16-20.09.2013

(b) Modelowanie dyfuzji innowacji, 42 Zjazd Fizyków Polskich, Poznań 8-13.09.2013

(c) Spontaneous reorientations in a model of opinion dynamics with anticonfor-
mists, Middle European Cooperation in Statistical Physics MECO 35, Pont-a-
Mousson 15-19.03.2010

(d) Dogadamy siȩ czy nie? – o modelowaniu ewolucji opinii w socjofizyce, Sympo-
zjum FENS’06, Kraków 21-22.04.2006

2. Ponadto prezentowałam postery m.in. na następujących konferencjach/szkołach: Al-
tenberg Summer School on Fundamental Problems in Statistical Physics (Altenberg
1997), Middle European Cooperation in Statistical Physics – MECO 22 (Szklarska
Poręba 1997), MECO 24 (Lutherstadt-Wittenberg 1999), MECO 27 (Sopron 2002),
MECO 28 (Saarbrücken 2003), MECO 29 (Bratislava 2004), European Conference
on Complex Systems ECCS’12 (Brussels 2012).

3.2.2 Wybrane wykłady zaproszone w placówkach naukowych

Wykłady zaproszone na seminariach w zagranicznych placówkach naukowych

1. Diffusion of innovation within an agent-based model, FIME (Finance for Energy
Market) seminar, Institut Henri Poincarré, Paryż 7.11.2014

2. Social Physics or Sociophysics?, Joint Seminar: Department of Physics and Cen-
tre for Computational Science and Engineering, National University of Singapore,
Singapur 11.12.2012

3. Social Physics or Sociophysics?, Physics Friday Colloquia, Department of Physics
Norwegian University of Science and Technology, Trondheim 16.09.2011

4. Can we treat people like particles? – a simple model of opinion dynamics, De-
partment of Physics Norwegian University of Science and Technology Trondheim,
03.05.2009

5. Opinion Formation, Irrational Thinking and Spreading of Minorities, Chair of So-
ciology, in particular of Modelling and Simulations, ETH Zurich, Zurych 18.12.2007

6. A simple model of opinion formation, Institute of Industrial Science, University of
Tokyo, Tokyo 12.11.2004

7. A simple model of opinion formation, Department of Physics, Tokyo Metropolitan
University, Tokyo 10.11.2004
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8. New dynamical model of Ising spins, Ikegami Laboratory, University of Tokyo, Tokyo
8.11.2004

9. From social psychology to sociology - a physicist’s point of view, Division of Con-
densed Matter Physics of the Institute of Physics of the Academy of Sciences of the
Czech Republic, Praga 6.11.2003

Wykłady zaproszone na seminariach w krajowych placówkach naukowych

1. Jak modelować dyfuzję innowacji?, Collegium Physicum, Wydział Fizyki Uniwersy-
tetu im. Adama Mickiewicza w Poznaniu, Poznań 5.11.2013

2. Czy możliwe są przejścia fazowe w układach jednowymiarowych?, Seminarium In-
stytutu Fizyki, Politechnika Wrocławska, Wrocław 7.01.20132

3. Proste modele układów złożonych, Instytut Fizyki Uniwersytetu Opolskiego, Opole
6.11.2011

4. Phase transitions in 1D kinetic Ising model, Seminarium Kinetyka — korelacje –
złożoność, Instytut Fizyki Politechniki Wrocławskiej, Wrocław 17.11.2010

5. Ludzi można traktować jak cząstki, tylko po co? — o sensie socjofizyki, Centrum
Informatyczne w Świerku, Świerk 19.05.2010

6. Ludzi można traktować jak cząstki, tylko po co? — o sensie socjofizyki, Instytut
Niskich Temperatur i Badań Strukturalnych PAN, Wrocław 10.03.2010

7. Ludzi można traktować jak cząstki, tylko po co?, Seminarium Instytutu Fizyki, Po-
litechnika Wrocławska, Wrocław 22.02.2010

8. Nowy model spinów Isinga – czyli o tym jak nauki społeczne zainspirowały fizy-
ka, Seminarium Dynamiki Układów Złożonych, Politechnika Warszawska, Warszawa
23.10.2006

9. Socjaliści czy Liberałowie? - socjofizyka w polityce, Seminarium Wydziału Fizyki i
Astronomii, Uniwersytet Zielonogórski, Zielona góra 25.10.2005

10. Czy ludzi można traktować jak cząstki?, Seminarium Fizyki Statystycznej, Uniwer-
sytet Warszawski, Warszawa 7.05.2004

11. Nowy dynamiczny model spinów isingowskich, Seminarium Fizyki Statystycznej,Uniwersytet
Warszawski, Warszawa 7.05.2004

2W tym czasie pracowałam jeszcze na Uniwersytecie Wrocławskim.
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3.2.3 Członkostwo w komitetach redakcyjnych i radach nauko-
wych czasopism

• Redaktor w sekcji Interdisciplinary Physics międzynarodowego czasopisma Frontiers
in Physics, Frontiers, od 2013

• Redaktor czasopisma International Journal of Statistical Mechanics, Hindawi, od
2013

• Członek komitetu redakcyjnego w czasopismie z listy filadelfijskiej Physica A (IF5Y =
1.684), Elsevier, od 2010

3.2.4 Wykaz realizowanych projektów naukowo-badawczych

2014-2016 Główny wykonawca, India-Polish Inter-Governmental Science & Technology
Cooperation Programme, Data Driven Approaches for Inferring Opinion Dynamics
on Social Networks, Indian Institute of Technology Kharagpur, Indie

2014-2016 Główny wykonawca, grant badawczy NCN OPUS nr 2013/11/B/HS4/01061,
Ekonomiczne konsekwencje kształtowania się opinii i podejmowania decyzji przez
konsumentów: Modelowanie agentowe dyfuzji innowacji, PWr

2014-2016 Opiekun w grancie badawczym NCN FUGA na staż po-doktorski dla dr Anny
Chmiel nr 2014/12/S/ST3/00326, Procesy nierównowagowe na sieciach wielopozio-
mowych, PWr

2011-2014 Kierownik, grant badawczy NCN OPUS nr 2011/01/B/ST3/00727, Zastoso-
wanie prostych modeli spinowych w marketingu społecznym i komercyjnym, UWr

2011-2014 Główny wykonawca, grant badawczy NCN OPUS nr 2011/01/B/HS4/02740,
Modelowanie dynamiki zachowań konsumentów na rynkach oligopolistycznych za po-
mocą automatów komórkowych, Politechnika Śląska

2007-2009 Kierownik, ministerialny grant własny nr N N202 0194 33, Nowa lokalna
dynamika spinów Isinga z punktu widzenia teorii nierównowagowych układów dyna-
micznych i zastosowań w modelowaniu grup społecznych, UWr

2007-2009 Kierownik, ministerialny grant promotorski dla Sylwii Krupy nr N N202 0907
33, Analiza układów spinów isingowskich z zero-temperaturowymi lokalnymi dyna-
mikami, UWr

2000-2002 Główny wykonawca, grant KBN nr 2p03B2718

1999-2000 Kierownik, Projekt badawczy wewnętrzny 2318/W/IFT finansowany przez
Uniwersytet Wrocławski

1997-1998 Kierownik, Projekt badawczy wewnętrzny 2201/W/IFT finansowany przez
Uniwersytet Wrocławski
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3.2.5 Informacje o kierowaniu zespołami badawczymi

2011-2014 Kierowanie zespołem badawczym składającym się z 5 pracowników i studen-
tów, w ramach grantu NCN OPUS 2011/01/B/ST3/00727, IFT UWr

2012-2013 Kierownik Katedry UNESCO Badań Interdyscyplinarnych (12-14 pracowni-
ków), IFT UWr

2009-2013 Kierownik Zakładu Układów Złożonych i Dynamiki Nieliniowej (8-10 pra-
cowników, 4-6 doktorantów), IFT UWr

3.3 Informacja o współpracy z otoczeniem społecz-
nym i gospodarczym

• Recenzentka projektów badawczych ministerialnych

• Umiejętności numeryczne, autorski kurs we współpracy z pracodawcami (między
innymi McKinsey i Google) w ramach projektu Wrocławski Absolwent Program
przygotowania kadr dla nowoczesnego sektora usług realizowanego przez Uniwersytet
Wrocławski i współfinansowanego przez Gminę Wrocław (2010-2011)

• Współpraca naukowa z Easygreen Lejkowski Cezary w celu promowania zachowań
i działań zgodnych z Zielonymi Standardami (certyfikaty Green Brand and Global
Green Consulting Center) (2010-2013)

3.4 Informacja o współpracy międzynarodowej

3.4.1 Staże i wyjazdy zagraniczne

Ze względu na sytuację rodzinną odrzuciłam zaproszenia dłuższych wyjazdów zagranicz-
nych. Wielokrotnie natomiast przyjmowałam zaproszenia do pobytów kiludniowych po-
łączonych zwykle z zaproszonym wykładem (patrz 3.2.2). Odbyłam tylko trzy dłuższe
(powyżej 7 dni) wyjazdy zagraniczne:

1. Department of Physics, Norwegian University of Science and Technology, Trondheim
(09-19.09.2011) na zaproszenie prof. Ingve Simonsena

2. Department of Physics, Norwegian University of Science and Technology, Trondheim
(30.04-10.05.2009) na zaproszenie prof. Ingve Simonsena

3. Institute of Industrial Science, University of Tokyo, Tokyo (08-20.11.2004)
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3.4.2 Recenzowanie prac publikowanych w czasopismach mię-
dzynarodowych ze wskaźnikiem impact factor

Wyjątkowo częste powoływanie na recenzenta przez:3

• Physical Review Letters [IF=7.411] and Physical Review E [IF=2.302] – 30 wyko-
nanych recenzji

• Physica A [IF=1.684] – 33 wykonanych recenzji

Regularne powoływanie na recenzenta przez:

• Advances in Complex Systems [IF=0.918]

• European Physical Journal B [IF=1.515]

• Europhysics Letters [IF=2.112]

• Journal of Statitical Physics [IF=1.239]

• International Journal of Modern Physics C [IF=0.949]

• Physics Letters A [IF=1.706]

Sporadyczne powoływanie na recenzenta przez:

• Behavioural Processes [IF=1.760]

• Complexity [IF=1.290]

• Journal of the Royal Society – Interface [IF=4.875]

3.4.3 Członkostwo w międzynarodowych organizacjach i towa-
rzystwach naukowych

1. Członek Towarzystwa Układów Złożonych (Complex Systems Society), od 2012

3.4.4 Udział w międzynarodowych zespołach eksperckich

1. Członek jury w prestiżowej międzynarodowej nagrodzie Young-Scientist Award for
Socio- and Econophysics 2014 (grudzień 2014)

2. Członek komisji habilitacyjnej Laury Hernandez, Laboratoire de Physique Théorique
et Modelisation (LPTM), joint laboratory of CNRS and Université de Cergy Pon-
toise (listopad 2014 - luty 2015)

3. Współorganizatorka Cultural and Opinion Dynamics: Modeling, Experiments and
Challenges for the future, ECCS 2014 Satellite, Lucca, 24.09.2013

3Podane są 5-letnie wskaźniki IF.
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4. Współorganizatorka Cultural and Opinion Dynamics: Modeling, Experiments and
Challenges for the future, ECCS 2013 Satellite, Barcelona, 18-19.09.2013

5. Członek komitetu naukowego Cultural and Opinion Dynamics: Modeling, Experi-
ments and Challenges for the future, ECCS 2012 Satellite, Brussels, 5-6.09.2012

6. Członek komitetu naukowego Cultural and Opinion Dynamics: Modeling, Experi-
ments and Challenges for the future, ECCS 2011 Satellite, Wien, 14-15.09.2011

7. Recenzentka prac dyplomowych w Department of Physics, NTNU, Trondheim, Nor-
wegia

3.4.5 Udział w międzynarodowych zespołach badawczych

1. Udział w projekcie Data Driven Approaches for Inferring Opinion Dynamics on So-
cial Networks sponsorowanym w latach 2014-2016 przez India-Polish Inter-Govern-
mental Science & Technology Co; współpraca z grupą z Indian Institute of Techno-
logy Kharagpur (science24.com/events/1602/boa/boa.pdf)

2. Współpraca z prof. Frantiskiem Slaniną, Instytut Fizyki, Czeska Akademia Nauk,
Praga, Czechy (od 2003 roku)

3. Współpraca z prof. Josephem Indekeu, Sekcja Fizyki Teoretycznej, Uniwersytet Ka-
tolicki w Leuven, Belgia (od 1997 roku)

3.5 Informacja o dorobku dydaktycznym, populary-
zatorskim i organizacyjnym

3.5.1 Prowadzone wykłady i seminaria naukowe

1. Prowadzenie seminarium Zakładu Dynamiki Nieliniowej i Układów Złożonych, In-
stytut Fizyki Teoretycznej, Uniwersytet Wrocławski (2009-2013)

2. Prowadzenie seminarium Katedry UNESCO Studiów Interdyscyplinarnych, Uniwer-
sytet Wrocławski (2009-2013)

3. Statistical Physics Modern Theory of Phase Transitions (wykład i ćwiczenia po
angielsku), Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska
(2013/2014)

4. Phase Transitions in Complex Systems (wykład monograficzny), Wydział Podsta-
wowych Problemów Techniki, Politechnika Wrocławska (2014)

5. Mechanika i Termodynamika (wykład i ćwiczenia), Wydział Podstawowych Proble-
mów Techniki, Politechnika Wrocławska (2013-2015)

6. Fale i elektromagnetyzm (wykład, ćwiczenia i laboratorium), Wydział Podstawo-
wych Problemów Techniki, Politechnika Wrocławska (2014)
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7. Modelarnia – krytyczność i złożoność (wykład, seminarium, konwersatorium oraz
laboratorium komputerowe) , Wydział Fizyki i Astronomii, Uniwersytet Wrocławski
(2012-2013)

8. Klasyczna fizyka teoretyczna 2 (wykład), Wydział Fizyki i Astronomii, Uniwersytet
Wrocławski (2011-2013)

9. Nierównowagowe przejścia fazowe (wykład monograficzny) , Wydział Fizyki i Astro-
nomii, Uniwersytet Wrocławski (2011)

10. Fizyka statystyczna (wykład), Wydział Fizyki i Astronomii, Uniwersytet Wrocław-
ski (2006-2012)

11. Teoria przejść fazowych i zjawisk krytycznych (wykład) Wydział Fizyki i Astrono-
mii, Uniwersytet Wrocławski (2006-2012)

12. Modelowanie komputerowe (wykład, laboratorium komputerowe) Wydział Fizyki i
Astronomii, Uniwersytet Wrocławski (2000-2013)

13. Seminaria magisterskie i licencjackie, Wydział Fizyki i Astronomii, Uniwersytet
Wrocławski (2008-2010)

14. Egzotyczna fizyka statystyczna (seminarium), Wydział Fizyki i Astronomii, Uniwer-
sytet Wrocławski (2000-2001)

3.5.2 Opieka naukowa nad doktorantami i osobami ubiegający-
mi się o nadanie stopnia doktora

1. Promotor: Piotr Przybyła Nierównowagowa dynamika spinów isingowskich z punk-
tu widzenia teorii układów złożonych i zastosowań interdyscyplinarnych, Wydział
Podstawowych Problemów Techniki, Politechnika Wrocławska, otwarcie przewodu
3.12.2013, przewidywany termin obrony 2015/2016

2. Promotor: Piotr Nyczka Przejścia Fazowe w uogólnionym modelu q-wyborcy na grafie
zupełnym, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, rozprawa doktor-
ska obroniona 24.02.2015

3. Promotor: Sylwia Krupa Analiza układów spinów isingowskich z zero-temperaturowymi
lokalnymi dynamikami, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, roz-
prawa doktorska obroniona 19.06.2009

3.5.3 Recenzje prac doktorskich i dyplomowych

1. dr Agnieszka Czaplicka, Procesy transportu i ewolucja topologii hierarchicznych sieci
złożonych, Wydział Fizyki, Politechnika Warszawska (obrona 20.10.2014)

2. dr Maciej Jagielski, Zastosowanie nieliniowego równania Langevina, równania Fokkera-
Plancka oraz modeli błądzeń losowych do opisu dochodów gospodarstw domowych
Polski i Unii Europejskiej, Wydział Fizyki, Uniwersytet Warszawski (obrona 09.06.2014)
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3. dr Jacek Wendykier, Sieciowe modele typu drapieżniki i ofiary – zastosowanie w
modelowaniu nowotworów, Instytut Fizyki, Uniwersytet Opolski (obrona 10.10.2013)

4. dr Tomasz Gubiec, Modele błądzenia losowego w czasie ciągłym z pamięcią. Zasto-
sowanie do opisu dynamiki rynków finansowych,Wydział Fizyki, Uniwersytet War-
szawski (obrona 12.12.2011)

5. recenzentka ponad 30 prac magisterskich i dyplomowych

3.5.4 Artykuły i prace o charakterze popularnonaukowym

1. G. Kontrym-Sznajd, K. Sznajd-Weron Jak zainteresować uczniów fizyką?, Problemy
dydaktyki fizyki, Wrocławskie Wydawnictwo Oświatowe ATUT, Centrum Edukacji
Nauczycielskiej Uniw. Wrocł., Wrocław-Czeszów 2013, ISBN 978-83-7432-992-7str.
57-66

2. A. Pękalski, K. Sznajd-Weron, Układy złożone na Uniwersytecie Wrocławskim, Prze-
gląd Uniwersytecki, grudzień 2004

3. K. Sznajd-Weron, W sieci małego świata, Wiedza i Życie, luty/04, 68-71 (2004)

4. K. Sznajd-Weron, Seks według wzoru, Wiedza i Życie, kwiecień/02, 46-49 (2002)

5. K. Sznajd-Weron, Opowieść o fizyce egzotycznej, Wiedza i Życie, październik/01,
46-49 (2001)

3.5.5 Przygotowane materiały do e-learningu

1. Skrypt do wykładu Fizyka statystyczna dostępny na serwisie studenckim
http://panoramix.ift.uni.wroc.pl oraz na mojej stronie domowej

2. Skrypt do wykładu Teoria przejść fazowych i zjawisk krytycznych dostępny na ser-
wisie studenckim http://panoramix.ift.uni.wroc.pl/ oraz na mojej stronie domowej

3. Skrypt w formie prezentacji multimedialnych do wykładu Modelowanie komputerowe
dostępny na serwisie studenckim http://panoramix.ift.uni.wroc.pl/

4. Skrypty do kursu Modelarnia – krytyczność i złożoność dostępny na serwisie stu-
denckim http://panoramix.ift.uni.wroc.pl/, na stronie Wydziału Fizyki i Astrono-
mii Uniwersytetu Wrocławskiego w zakładce projekty POKL oraz na mojej stronie
domowej

5. Opracowanie slajdów (pdf) do niemal wszystkich prowadzonych kursów. Materiały
do zajęć prowadzonych w danym semestrze są dostępne dla studentów na mojej
stronie domowej
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3.5.6 Aktywny udział w imprezach popularyzujących naukę, kul-
turę oraz sztukę

1. Czy psychologia może się spotkać z fizyką? Wykład Inauguracyjny w Szkole Wyższej
Psychologii Społecznej, Wrocław 7.10.2014

2. Co w praktyce oznacza nieskończoność? Fizyczno Astronomiczna Konferencja Stu-
dencka, FAK 2014, Politechnika Wrocławska, Wrocław 16.05.2014

3. Seria wykładów poświęcona układom złożonym w ramach koła naukowego fizy-
ków Nabla, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska
(2013-2014)

4. W sieci jeszcze mniejszego świata - życie na facebooku i nie tylko, Fizyczno Astro-
nomiczna Konferencja Studencka, FAK 2013, Wrocław 19.05.2013

5. Jaki może być powód rewolucji? Czyli o układach społecznych oczami fizyka, Uni-
wersytet Trzeciego Wieku, Wrocław 19.11.2012

6. Jaki może być powód rewolucji? Czyli o układach społecznych oczami fizyka, XIV
Dolnośląski Festiwal Nauki, Uniwersytet Wrocławski, Wrocław 21.09.2011

7. Jaki może być powód rewolucji? Czyli o układach społecznych oczami fizyka, Szczecin
humanistyczny, Rektorat Uniwersytetu Szczecińskiego, Szczecin 4.04.2011

8. Dogadamy się czy nie? – czyli co ma fizyka do socjologii, XII Dolnośląski Festiwal
Nauki, Uniwersytet Wrocławski, Wrocław 19.09.2009

9. Czy ludzi można traktować jak cząstki - spojrzenie fizyka, Oddział Wrocławskiego
Polskiego Towarzystwa Socjologicznego, Instytut Socjologii, Uniwersytet Wrocław-
ski, Wrocław 15.12.2004

10. Czy Bóg ma przepis? - od chaosu deterministycznego po fraktale, VI Dolnośląski
Festiwal Nauki, Uniwersytet Wrocławski, Wrocław, 09.2004

11. Czy ludzi można traktować jak cząstki?, Szkoła Główna Gospodarstwa Wiejskiego,
Warszawa, 6.05.2004

12. Jak przekonywać innych? - socjofizyka: model Sznajdów, Obóz Naukowym Krajowe-
go Funduszu na Rzecz Dzieci, Świdr-Otwock, 8.05.2003

13. Jak przekonywać innych? czyli socjofizyka, VI Dolnośląski Festiwal Nauki, Uniwer-
sytet Wrocławski, Wrocław wrzesień 2003 oraz Wałbrzych październik 2003

14. Katastrofy oczami fizyków - od lawin piasku po wielkie wymierania, V Dolnoślą-
ski Festiwal Nauki, Uniwersytet Wrocławski, Wrocław 20.09.2002 oraz Wałbrzych
4.10.2002
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3.5.7 Organizacja międzynarodowych konferencji naukowych

1. Współorganizatorka Cultural and Opinion Dynamics: Modeling, Experiments and
Challenges for the future, ECCS 2014 Satellite, Lucca 24.09.2014

2. Dyrektor CODYM Spring Workshop (CODYM-Spring’14), Politechnika Wrocław-
ska, Wrocław 7-8.04.2014

3. Współorganizatorka Cultural and Opinion Dynamics: Modeling, Experiments and
Challenges for the future, ECCS 2013 Satellite, Barcelona 18.09.2013

4. Dyrektor, 47 Zimowa Szkoła Fizyki Teoretycznej Simple Models for Complex Sys-
tems, Lądek-Zdrój 7-12.02.2011

5. Dyrektor, XXIII Sympozjum Maksa Borna Critical Phenomena in Complex Sys-
tems, Polanica-Zdrój 3-6.09.2007

6. Współorganizatorka, Workshop on Science for Conservation & Preservation of Cul-
tural Heritage Research & Education, Wydział Chemii Uniwersytetu Wrocławskiego,
Wrocław 4-5.06.2007

7. Sekretarz, XVIII Sympozjum Maxa Borna Statistical Physics Outside Pure Physics,
Lądek-Zdrój 22-25.09.2003

8. Sekretarz, 36 Zimowa Szkoła Fizyki Teoretycznej Exotic Statistical Physics, Lądek-
Zdrój 11-19.02.2000

9. Sekretarz, XI Sympozjum Maxa Borna Anomalous Diffusion: from Basis to Appli-
cations, Lądek-Zdrój 20-27.05.1998

3.5.8 Pozostała działalność organizacyjna i dydaktyczna

1. Sekretarz w zarządzie sekcji FENS (Fizyka w ekonomii i naukach społecznych) Pol-
skiego Towarzystwa Fizycznego (2014-2016)

2. Sekretarz komisji habilitacyjnej dr hab. Grzegorza Pawlika, Instytut Fizyki, Poli-
technika Wrocławska (2014)

3. Sekretarz komisji habilitacyjnej dr hab. Dariusza Grecha, Wydział Fizyki i Astro-
nomii, Uniwersytet Wrocławski (2013)

4. Opiekunka koła naukowego Fizyków Nabla, Wydział Podstawowych Problemów
Techniki, Politechnika Wrocławska (od 2013)

5. Lider do spraw nauczania fizyki na Wydziale Elektrycznym Politechniki Wrocław-
skiej (od 2013)

6. Przewodnicząca komisji dyscyplinarnej dla nauczycieli akademickich na Wydziale
Fizyki i Astronomii Uniwersytetu Wrocławskiego (2012-2013)

38



7. Członek wydziałowego zespołu ds. jakości kształcenia na Wydziale Fizyki i Astro-
nomii Uniwersytetu Wrocławskiego (2011-2013)

3.6 Informacja o otrzymanych nagrodach oraz wy-
różnieniach naukowych i dydaktycznych

2011 Medal Komisji Edukacji Narodowej

2010 Nagroda Rektora Uniwersytetu Wrocławskiego za osiągnięcia dydaktyczne i orga-
nizacyjne

2007 Young-Scientist Award for Socio- and Econophysics – prestiżowa nagroda przyzna-
wana przez Niemieckie Towarzystwo Fizyczne corocznie tylko jednej osobie z całego
świata (nominowanej przez środowisko naukowe)

2006 Nagroda Rektora Uniwersytetu Wrocławskiego za osiągnięcia dydaktyczne i orga-
nizacyjne

2005 Nagroda Rektora Uniwersytetu Wrocławskiego za osiągnięcia naukowe

2003 Stypendium krajowe Fundacji na rzecz Nauki Polskiej dla młodych naukowców

2002 Stypendium krajowe Fundacji na rzecz Nauki Polskiej dla młodych naukowców

2002 Nagroda Zespołowa Ministra Edukacji Narodowej i Sportu za współautorstwo cyklu
prac dotyczących zastosowania metod symulacji komputerowej, metody Monte Car-
lo, do zagadnień ewolucji biologicznej i adsorbcji sztywnych prętów na powierzchni

2000 Nagroda Rektora Uniwersytetu Wrocławskiego za osiągnięcia dydaktyczne

1999 Nagroda Zespołowa Ministra Edukacji Narodowej za współautorstwo cyklu prac
dotyczących zastosowania metod fizyki statystycznej do biologii i socjologii

1997 Nagroda Zespołowa Ministra Edukacji Narodowej za współautorstwo cyklu prac
dotyczących różnych modeli zjawisk zachodzących w materii skondensowanej i ukła-
dach biologicznych

1995 Nagroda II stopnia im. Arkadiusza Piekary przyznawana przez Polskie Towarzystwo
Fizyczne za pracę magisterską
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Rozdział 4

Informacja o najważniejszym
osiągnięciu naukowym.

W moim odczuciu, najważniejszym osiągnięciem naukowym po habilitacji jest poniższa
seria dziesięciu prac, zainicjowanych własnymi pomysłami a przygotowanymi w znacz-
nej większości z moimi studentami (M. Tabiszewski, R. Topolnicki, K. Suszczyński) lub
doktorantami (S. Krupa, P. Przybyła, B. Skorupa, P. Nyczka). Wszystkie prace w serii
koncentrują się na tym samym zagadnieniu – wrażliwości wielkości makroskopowych nie-
równowagowych modeli spinowych na detale wprowadzane na poziomie mikroskopowym:

[P0] K. Sznajd-Weron, S. Krupa, Inflow versus outflow zero-temperature dynamics in
one dimension, Phys. Rev. E 74, 031109 (2006).1

[P1] F. Slanina, K. Sznajd-Weron, P. Przybyła, Some new results on one-dimensional
outflow dynamics, Europhys. Lett. 82, 18006 (2008).

[P2] K. Sznajd-Weron, Phase transition in a one-dimensional Ising ferromagnet at zero
temperature using Glauber dynamics with a synchronous updating mode, Phys. Rev.
E 82, 031120 (2010).

[P3] K. Sznajd-Weron, M. Tabiszewski, A. Timpanaro, Phase transition in the Sznajd
model with independence, Europhys. Lett. 96, 48002 (2011).

[P4] P. Przybyła, K. Sznajd-Weron and M. Tabiszewski, Exit probability in a one-dimen-
sional nonlinear q-voter model, Phys. Rev. E 84, 031117 (2011).

[P5] B. Skorupa, K. Sznajd-Weron, R. Topolnicki, Phase diagram for a zero-temperature
Glauber dynamics under partially synchronous update, Phys. Rev. E 86, 051113
(2012).

[P6] P. Nyczka, K. Sznajd-Weron, J. Cislo, Phase transitions in the q-voter model with
two types of stochastic driving, Phys. Rev. E 86, 011105 (2012).

1Chociaż formalnie ten artykuł został opublikowany po nadaniu mi stopnia doktora habilitowanego,
zamieszczam go na tej liście z dwóch powodów. Po pierwsze, złożyłam rozprawę habilitacyjną już we
wrześniu 2005, a pracę nad tym artykułem rozpoczęłam dopiero na początku roku 2006. Po drugie, ta
praca zainicjowała kolejne prace znajdujące się w tym cyklu.
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[P7] P. Nyczka, K. Sznajd-Weron, Anticonformity or Independence? – Insights from Sta-
tistical Physics, Journal of Statistical Physics 151, 174-202 (2013).

[P8] K. Sznajd-Weron, K. Suszczyński, Nonlinear q-voter model with deadlocks on the
Watts-Strogatz graph, J. Stat. Mech. P07018 (2014).

[P9] K. Sznajd-Weron, J. Szwabiński, R. Weron, Is the Person-Situation Debate Impor-
tant for Agent-Based Modeling and Vice-Versa? PLoS ONE 9(11), e112203 (2014).

Jak już wspomniałam w rozdziale 2.1.3, jednym z głównych problemów w dziedzinie
symulacji społecznych jest, jak zauważył Macy i Willer2, zbyt mała troska o analizę tego, w
jakim stopniu konstrukcja modelu wpływa na wyniki. Jest to szczególnie istotny problem,
gdyż symulacje społeczne są często traktowane jako substytut eksperymentu społecznego.
Ponieważ podobny problem zauważam równiez w socjofizyce, uznałam, że warto przyjrzeć
się bliżej niektórym spornym zagadnieniom. W powyższej serii prac starałam się odpo-
wiedzieć na kilka pytań, które można zawrzeć w jednym ogólnym pytaniu: Jak, czasami
pozornie drobne, różnice wprowadzone na poziomie mikroskopowym modelu, ujawniają się
w skali makroskopowej? W szczególności skupiłam się na następujących pytaniach:

• Czy dynamiki dopływu i wypływu są równoważne [P0, P1]?

• Jaka jest rola aktualizacji w dynamikach spinowych [P0, P2, P5]?

• Jak stacjonarne własności modelu (w tym stany absorpcyjne i diagramy fazowe)
zależą od warunków początkowych i wielkości grupy wpływu [P1, P3, P4, P6, P8]?

• Jakie są różnice, z punktu widzenia makroskopowego zachowania układu (grupy
społecznej), pomiędzy różnymi rodzajami nonkonformizmu (antykonformizm lub
niezależność) wprowadzanymi na poziomie mikroskopowym (jednostki) skoro oba
mogą być traktowane jako pewien szum zaburzający konsensus [P3, P6, P7] ?

• Czy założenia, dotyczące modelowania reakcji agenta (cechy osobiste albo sytuacja)
na wpływ społeczny, mają znaczący wpływ na makroskopowe zachowanie układu
[P9]?

Szukając odpowiedzi na powyższe pytania, przy okazji udało mi się również uzyskać kilka
ciekawych wyników teoretycznych dotyczących prawdopodobieństwa ucieczki (exit pro-
bability) i przejść fazowych dla zero-temperaturowej dynamiki Glaubera oraz modelu q-
votera (szczegóły w rozdziale 2.1.3). Dlatego mam nadzieję, że powyższy cykl prac bę-
dzie miał wpływ nie tylko na rozwój interdyscyplinarnej dziedziny układów złożonych, w
szczególności na obszar modelowania agentowego, ale również przyczyni się do rozwoju
nierównowagowej fizyki statystycznej.

2M. W. Macy, R. Willer, From factors to actors: computational sociology and agent-based modeling.,
Annu. Rev. Sociol. 28, 143–166 (2002).
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Chapter 1

Personal data

1.1 Bio data

• Name and surname: Katarzyna Weron (Katarzyna Sznajd-Weron in publica-
tions)

• Date and place of birth: 7th April 1971, Wroc law

• Nationality: Polish

• Marital status: Married, two sons (1996, 2001)

• Home address: Dȩbowa 16, 51-217 Pruszowice, Poland

1.2 Present position

Professor (Extraordinary professor) since 1.10.2013
Department of Theoretical Physics, Faculty of Fundamental Problems of Technology,
Wroc law University of Technology (PWr),
Wyb. Wyspiańskiego 27, 50-370 Wroc law, Poland
Tel. +48-71-320-2159, fax +48-71-328-3696, mob. +48-605-459671
E-mail: Katarzyna.Weron@pwr.edu.pl,
URL: http://www.if.pwr.wroc.pl/˜katarzynaweron

1.3 Academic positions held

10.2013-today Professor (Extraordinary professor), Department of Theoretical Physics,
Wroc law University of Technology (PWr)

09.2011-09.2013 Professor (Extraordinary professor), Institute of Theoretical Physics
(IFT), University of Wroc law (UWr)

07.2012-09.2013 Head of UNESCO Chair of Interdisciplinary Studies, IFT UWr
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09.2009-09.2013 Head of Complex Systems and Nonlinear Dynamics (CoSyNoDy) Di-
vision, IFT UWr

01.2007-09.2011 Associate Professor, IFT UWr

02.1999-12.2006 Assistant Professor, IFT UWr

09.1995-12.1998 Ph.D. student, IFT UWr

1.4 Academic degrees

16.12.2006 Habilitation in Physics (Statistical Physics), IFT UWr; Dissertation title: A
new local dynamics in the Ising spins system.

18.12.1998 Ph.D. in Physics (Statistical Physics), IFT UWr; Dissertation title: Modeling
of biological evolution via methods of statical physics ; Supervisor: Prof. dr hab.
Andrzej Pȩkalski

10.05.1995 M.Sc. in Physics (Computational Physics), IFT UWr; Dissertation title:
Modeling diffusion Li on Mo(112); Supervisor: Prof. dr hab. Andrzej Pȩkalski
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Chapter 2

Summary of professional
achievements

2.1 Scientific achievements

My research interest has gradually evolved from applications of statistical physics in mod-
eling population dynamics and biological evolution, through sociophysics, in particular,
modeling opinion dynamics, to theoretical aspects of non-equilibrium spin systems. My
academic achievements may be divided into three groups:

I. applications of statistical physics in modeling biological systems (1996–2003),

II. applications of agent-based models in social systems, including financial, marketing
and political oriented problems (2000–today),

III. theoretical aspects of non-equilibrium spin dynamics, including phase transitions
and first passage properties (2002–today),

which are comprehensively discussed in Sections 2.1.1–2.1.3. They include:

• 43 peer-reviewed articles in JCR-listed journals,

• 2 conference papers,

• 5 popular science and related articles.

Some of the results have been presented also at conferences and seminars in Poland and
abroad, in particular, I had:

• 13 invited and plenary conference talks,

• 20 invited seminar talks, including 9 abroad.

I must add here that – for family reasons – I rejected a number of invitations to con-
ferences, seminars and long-term visits abroad. Although, I am aware that internships,
research visits and networking are very important for the development of a scientific ca-
reer, it was a fully thought through decision to give priority to my family. I believe, that
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in spite of this many of my results have been already recognized in Poland and abroad,
which is confirmed by the fact that according to Web of Science (WoS) in the years 1996-
2014 my publications have been cited 914 times1. Moreover, my papers have been also
repeatedly cited in monographs, see Section 3.1.

My research has always been focused on interdisciplinary applications of statistical
physics. After obtaining an M.Sc. degree in Physics in May 1995 (University of
Wroc law, specialization: computational physics), I started to work on modeling biological
evolution under the supervision of Prof. Andrzej Pȩkalski. In the period 1996-2003, which
includes Ph.D. studies in the Institute of Theoretical Physics, University of Wroc law
(1995-1998), I published 12 journal articles and my doctoral dissertation in this research
area. In the latter I proposed a model to describe the evolution of a single, quantitative
(continuous) trait in a metapopulation that consists of a number of local populations
(demes) [8], [41], [42].2

After obtaining a doctoral degree in Physical Sciences in December 1998, I con-
tinued my research on biological systems for some time. However, since 1999, I have
gradually shifted my interest to spin dynamics and their applications in social sciences,
initially motivated by the articles and lectures of prof. Serge Galam and prof. Janusz
Ho lyst. In 2000 I published together with my father, prof. Józef Sznajd, my first article
on opinion dynamics, in which we proposed a new simple model with binary opinions and
outflow dynamics3, presently known as the Sznajd model4 [38]. This paper proved to be a
successful marriage of my father’s experience in dealing with equilibrium phase transitions
in magnetic systems and my long-term interest in social sciences, as well as my experience
in non-equilibrium dynamical systems. To this day, the paper has been cited over 500
times (according to WoS) and remains the most cited article published in the Interna-
tional Journal of Modern Physics C. The model itself received a lot of attention, including
dedicated chapters in review articles and books (for example, in the 2006 book A Beautiful
Math: John Nash, Game Theory, and the Modern Quest for a Code of Nature by Tom
Siegfried) and its own wiki-page (http : //en.wikipedia.org/wiki/Sznajd model). Quite
likely this popularity of the Sznajd model contributed significantly to the fact that in
2001 and 2002 I received the prestigious scholarship of the Foundation for Polish Science
(FNP) for young researchers.

Back in 2000, sociophysics was still a relatively unpopular topic among physicists.
However, in the years that followed it gained considerable recognition as one of the major
interdisciplinary applications of statistical physics. Special sections of physical societies,
conferences and journals started to appear, even separate interdisciplinary journals de-
voted to new applications of statistical physics were set up. In particular, in 2002 the
Physics of Socio-Economic Systems Division of the German Physical Society (DPG) es-
tablished a prestigious worldwide award – the Young Scientist Award for Socio- and
Econophysics. Two years later, in 2004 a new section of Polish Physical Society – Physics
in Economy and Social Science Section(FENS) – was established. In the same year the

1Excluding self-citations of all authors.
2Article numbering is consistent with the list of publications in Section 3.1.
3See Section 2.1.3 for a discussion on outflow and inflow dynamics.
4The term Sznajd model was coined by prof. Dietrich Stauffer in his early publications (2000-2002)

on the model.
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annual conference – the European Conference on Complex Systems, gathering every year
scholars from different disciplines including physicists, mathematicians, computer scien-
tists, biologists, economists and social psychologists, was organized for the first time.

Despite this growing interest, in the early 2000s applications of physics in the social
sciences were still treated as ‘exotic’, also in Poland. Therefore, having in mind obtaining
a habilitation (i.e. a ‘higher doctorate’) in physical sciences, I started to work on the
theoretical aspects of the proposed models of opinion dynamics. In the years 2002-2005 I
published in Physical Review E a series of four papers devoted to the new zero-temperature
outflow spin dynamics inspired by the Sznajd model [3]–[6]. In September 2005, I submit-
ted these four articles, together with three other papers on applications of spin dynamics
in social sciences (i.e. [32], [34], [38]), as my habilitation dissertation. In December 2006,
the habilitation colloquium was held at the Institute of Theoretical Physics, University
of Wroc law, after which I have been awarded a habilitation in physical sciences.5

After habilitation I have continued research in the field of sociophysics. I have
focused on two main areas: (A) theoretical aspects of spin dynamics, including those in-
spired by physical and social systems and (B) practical applications of microscopic mod-
els in social systems (opinion dynamics, diffusion of innovation, environmental marketing
campaigns, etc.). The year 2007 was particularly fruitful in my scientific carrier. That
year I applied for and received funding from the Polish Ministry of Science and Higher
Education (MNiSW) for a two-year research project A new local Ising spin dynamics
from the perspective of non-equilibrium theory of dynamical systems and applications in
modeling social systems (grant no. N N202 0194 33). In the same year my PhD student,
Sylwia Krupa, was awarded a MNiSW grant for Ph.D. candidates. She defended her
thesis in June 2009. In 2007 I also had the honor to receive the Young Scientist Award
for Socio- and Econophysics of the German Physical Society and gave invited lectures
at two prestigious events – the International School on Complexity. Course on Statis-
tical Physics of Social Dynamics: Opinions, Semiotic Dynamics, and Language (Erice,
Sicily, 17.07.2007) and the international symposium Computational Philosophy: Lessons
from Simple Models (Niels Bohr Institute, Copenhagen, 13.10.2007). Finally, in Septem-
ber 2007 I organized the XXIII Max Born Symposium Critical Phenomena in Complex
Systems (Polanica-Zdrój).

In the post-habilitation period I have also focused on theoretical aspects of non-
equilibrium spin dynamics. I have been interested in the first passage properties of these
dynamics (see [11], [20], [25]), as well as sensitivity of the macroscopic properties – in-
cluding phase transitions – to details introduced on the microscopic level (see [1], [9],
[14], [16]–[19], [23], [26]). In my opinion, the most important scientific achievement after
habilitation is devoted to this subject (see Section 2.1.3 and Chapter 4).

In the recent years I have also intensified collaboration with social scientists. In partic-
ular, I was a senior investigator in the grant Modeling of consumer behavior dynamics in
oligopoly markets by cellular automata (Faculty of Organization and Management, Sile-
sian University of Technology, 2011-2014), co-organizer of three interdisciplinary meetings
(CODYM 2013, CODYM-SPRING 2014, CODYM 2014; for details see Section 3.5.7) and
in the years 2012-2013 I was the head of the UNESCO Chair of Interdisciplinary Studies

5Habilitation is an academic degree sometimes referred to as ‘higher doctorate’. It is equivalent to
obtaining a tenured professorship at a North American university.
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(University of Wroc law). In 2014 I was invited, as one of two plenary lecturers, to the
7th Conference on Behavioral Economics, organized by the University of Social Sciences
and Humanities (SWPS) in May 2014. I was also honored to give the inaugural lecture
in October 2014 at the Wroc law Campus of SWPS. Presently I am a senior investigator
in the grant Economic consequences of consumer opinion formation and decision making:
Agent-based modeling of innovation diffusion (Faculty of Computer Science and Manage-
ment, Wroc law University of Technology, 2014-2016), within which I work mainly with
economists. Moreover, in 2015 I have started a collaboration with Dr. Katarzyna Byrka
from SWPS, a social psychologist specializing in environmental and health psychology.
Presently we are working on the model of psychological, social and economical barriers in
diffusion of innovation.

Currently I am also the supervisor in the postdoc research grant Fuga3 lead by Dr.
Anna Chmiel (grant no. 2014/12/S/ST3/00326; 2014-2016) devoted to dynamical models
on multi-level networks. Therefore some of my recent papers concern the role of topology
in opinion dynamics models, including two published articles ([11], [12]) and two more
under review6. As a consequence of this new line of research, I have started a collaboration
with the Social Network Group at Wroc law University of Technology. Without doubt the
subject of complex networks, including multiplex and temporal networks, will be one of
my research areas in the near future.

2.1.1 Applications of statistical physics in modeling biological
systems

In total, in the years 1996-2003 I published 12 articles in the area of modeling biologi-
cal evolution and population dynamics by methods of statistical physics. My first paper
in this series was published in Physical Review Letters and was aimed at answering the
following questions: Under what conditions can a population survive in a given environ-
ment? If the population may also migrate to another, initially empty, space – what are
the necessary similarities between the two environments, in order that the population can
develop in both regions? To answer these questions we proposed a lattice model, in which
each individual was characterized by its genome (modeled by a sequence of zeros and
ones) and the phenotype of the individual (i.e. a set of features), which simply resulted
from its genotype [43]. In this paper the reproduction was based on Mendel’s laws, i.e.
we considered only qualitative traits. We also assumed that the environment was char-
acterized by a certain ideal phenotype. Based on Monte Carlo simulations we were able
to determine the conditions necessary for a population to grow in a given environment
and colonize a new, empty niche. The model, although interesting, was relatively compli-
cated compared to other physical models of biological evolution and therefore difficult to
analyze theoretically. For this reason I have not continued to work on this model in the
subsequent years and I have come back to it only once, in 2001 [37].

During my Ph.D. studies I have proposed an agent-based model to describe the evolu-
tion of a single quantitative (continuous) trait in a meta-population that consists of many

6A. Chmiel, K. Sznajd-Weron, Phase transitions in the q-voter model with noise on a duplex clique,
arXiv:1503.01400 [physics.soc-ph]; A. Jȩdrzejewski, K. Sznajd-Weron, J. Szwabiński, Mapping the q-voter
model: From a single chain to complex networks, arXiv:1501.05091 [physics.soc-ph]

9



local populations, so called demes. In the model, the evolution was caused by gene flow
and natural selection (hence the model name – GFS) and each agent represented a single
deme, characterized by a continuous variable describing the mean value of the selected
quantitative trait. Interactions between neighboring demes were described by a nonlinear
equation, inspired by the Hamiltonian of the Blume-Capel model. Natural selection was
realized by a non-linear term and gene flow by a linear (diffusive) term of the equation.
I showed that the competition between these two terms was responsible for three basic
types of population structures observed in nature: (a) a continuously distributed popula-
tion, where spatial arrangement of a quantitative character (like body size or skin color)
showed gradient forms, (b) integration zones between two different populations and (c)
totally isolated populations. Due to the simplicity of the model I was able to analyze
it not only through Monte Carlo simulations but also analytically, using the mean field
approximation (MFA) and later using Fourier analysis. In total I have published 5 papers
on the GFS model ([8],[39]-[42]) and three of them constituted my Ph.D. thesis.

Among all issues related to biological evolution I have been working on, I devoted
the most time to the GSF model. However, in my opinion, the most interesting results
have been obtained in a two-paper series on instabilities in population dynamics. In [7]
I asked the question about the existence of the critical density, below which the popu-
lation was doomed to extinction, the so-called minimum viable population. To answer
this question I significantly simplified the model proposed in [43] and thus allowed for
analytical treatment, at least within MFA. I was able to show that this simple model
of population dynamics was capable of describing both the carrying capacity, which is a
stable steady state for the population, and the minimum viable population. The second
paper in the series ([33]) was written jointly with my student, Marcin Wolański. In this
paper we considered the model introduced in [7] and examined what strategy could help
the population to survive.

2.1.2 Applications of agent-based models in social systems

Soon after obtaining the doctoral degree I have started to work on applications of sta-
tistical physics in social sciences, in particular on opinion dynamics – one of the most
investigated subfields of sociophysics. In my opinion there are at least two important rea-
sons why physicists study this topic. The first motivation comes from social sciences and
can be described as a temptation to build a bridge between the micro and macro levels in
describing social systems. Traditionally, there are two main disciplines that study social
behavior – sociology and social psychology. Although the subject of the study is the same
for both disciplines, the usually taken approach is very different. Sociologists study social
systems from the level of the social group, whereas social psychologists concentrate on the
level of the individual. From the physicist’s point of view this is similar to the relation-
ship between thermodynamics and statistical physics. This analogy raises the challenge
to describe and understand the collective behavior of social systems (sociology) from the
level of interpersonal interactions (social psychology). The second motivation to deal with
opinion dynamics is related to the development of non-equilibrium statistical physics, be-
cause models of opinion dynamics are often very interesting from the theoretical point of
view. In 2000 we have proposed such a microscopic model [38], presently known as the
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Sznajd model, that inspired many researchers not only to apply it to investigate social
phenomena (e.g. marketing campaigns, financial markets or political campaigns) but also
to study theoretical aspects of the model.

It should be stressed here, that the application of microscopic models in social systems
is an older idea than sociophysics itself, if we assume that sociophysics was ‘born’ in 1982.7

Over a decade earlier, Thomas Schelling has proposed a model of spacial segregation,
which is strikingly similar to the Ising model with Kawasaki dynamics.8 Nowadays, this
type of approach is known in social sciences as agent-based modeling (ABM) and in recent
years has become increasingly popular, in particular in the field of marketing.

If one looks at my works devoted to applications of agent-based models in social
systems, one can see that I have also focused on problems related to marketing. However,
my first real-life application of the Sznajd model was in finance [34]. The aim was to
describe the mechanism of price formation in financial markets in terms of a modified
Sznajd model. Introducing two types of traders – followers and a fundamentalist – we
were able to reproduce major stylized facts of financial returns. The next paper in this
collection – [32] – concerned marketing strategies in duopoly markets (i.e. markets with
two competing suppliers). We tried to answer the question When is advertising effective
and when is it not? within a two dimensional modified Sznajd model with an external
field. Using Monte Carlo simulations we showed the existence of two phase transitions
– one related to the initial number of customers of a given product (so-called critical
mass) and second related to the level (or intensity) of advertising. Five years later, this
study was continued in a more general setting of oligopoly markets [24]. We studied the
problem of a new market entrant challenging two incumbents of roughly the same size,
like the mobile telecom Idea (later rebranded to Orange) challenged in the year 2000 two
well established telecoms at the time (Era and Plus). The general behavior of two related
ABM models was studied using MFA and Monte Carlo simulations. Interestingly, the
best fits to real data from the Polish telecom market were obtained for conformity level
p ∈ (0.3, 0.4), which agreed very well with the conformity level found by Solomon Asch
in his famous social experiment.

In the recent years, I have continued research in this field under the grant The use
of simple spin models in social and commercial marketing funded by the National Sci-
ence Centre (NCN). I have also begun several interdisciplinary collaborations: (1) with
the Economic Modeling Group from the Department of Operations Research, Wroc law
University of Technology, (2) with economist Dr. Agnieszka Kowalska-Styczeń from the
Department of Organization and Management, Silesian University of Technology, and
very recently (3) with social psychologist Dr. Katarzyna Byrka from the University of
Social Sciences and Humanities. As a result of these actions, I have published in the
years 2012-2014 four articles on agent-based models in marketing ([10],[12],[13],[15]) and
further papers are under preparation. These publications focus mainly on diffusion of
innovation, in particular of ecological products and services. One of the problems that
we have tackled is the so-called intention-behavior gap, observed empirically for some

7With the article S. Galam, Y. Gefen, Y. Shapir, Sociophysics: a new approach of sociological collective
behavior. I. Mean-behavior description of a strike, J. Math. Sociol. 9, 1-13 (1982).

8This was probably noted for the first time by Dietrich Stauffer and Sorin Solomon in Ising, Schelling
and self-organising segregation, Eur. Phys. J. B 57, 473-479 (2007)
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innovations, e.g. dynamic electricity tariffs, green energy or health-promoting behaviors.
Besides of the 6 above mentioned papers devoted to marketing and one to financial

markets, I have been also working on politically motivated problems ([21], [30]). In
my opinion, a particularly interesting idea has been proposed in [30]. In this paper we
introduced a model motivated by the political compass and based on the Ashkin-Teller
idea to assign two Ising spins to each site agent – one representing opinion in the economic
area and one in the personal area. We assumed that the mechanisms of opinion formation
in the economic area were given by the outflow dynamics, whereas in the personal area by
the inflow dynamics.9 We found, among others, that the formation of consensus between
groups of agents which differed only in the economic area was quite easy, whereas if they
differed in the personal area no consensus was possible. This result was also interesting
from the theoretical point of view and pointed to a qualitative difference between outflow
and inflow dynamics. This has motivated me to conduct theoretical studies discussed in
the following section.

2.1.3 Theoretical aspects of non-equilibrium spin dynamics

On one hand, the main challenge that we face when dealing with opinion dynamics models
is the requirement to describe a complex social system by a relatively simple model. This
has inspired many physicists to build models, like the Sznajd model, that cannot be easily
justified by physical phenomena. On the other hand, such models may be interesting in
themselves and may be treated as small building blocks that contribute to the construction
and better understanding of the still emerging non-equilibrium statistical physics.

In the Sznajd model, similarly as in a few earlier models of social dynamics10, the
system consists of N individuals, each holding one of two opposite opinions Si = ±1, like
particles in the Ising model. Strange as it may sound, binary opinions are natural from
the social point of view. A dichotomous response format with 1 (yes, true, agree) and 0
(no, false, disagree) as response options is one of the most common in social experiments.

As noted by Dietrich Stauffer: The crucial difference of the Sznajd model compared
with voter or Ising models is that information flows outward: A site does not follow what
the neighbours tell the site, but instead the site tries to convince the neighbours.11 Of late,
a debate on whether inflow dynamics is different from outflow dynamics has emerged.12

Another characteristic feature of the model is that unanimity, instead of majority, is
needed to convince others. This feature underlies the more general q-voter model proposed

9See Section 2.1.3 for a discussion on outflow and inflow dynamics.
10See e.g. S. Galam, Majority rule, hierarchical structures and democratic totalitarianism: a statistical

approach., J. Math. Psychol. 30, 426-434 (1986); M. Lewenstein, A. Nowak, B. Latane, Statistical
mechanics of social impact., Phys. Rev. A 45, 763-776 (1992); J. A. Ho lyst, K. Kacperski, F. Schweitzer,
Social impact models of opinion dynamics. Ann. Rev. Comput. Phys. 9, 253-273 (2001).

11D. Stauffer, Sociophysics: the Sznajd model and its applications., Computer Physics Communications
146, 93-98 (2002).

12To the best of my knowledge, both terms – inflow dynamics and ouflow dynamics – have been
introduced by me in [28]. Now they are widely used in the literature and the debate on the differences
between these two dynamics is not over yet, see e.g. P. Roy, S. Biswas, P. Sen, Exit probability in inflow
dynamics: nonuniversality induced by range, asymmetry and fluctuation, Physical Review E 89, 030103
(2014) and C. Castellano, R. Pastor-Satorras, Irrelevance of information outflow in opinion dynamics
models, Physical Review E 83, 016113 (2011).
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in 2009 by Castellano et al.13 and can be justified based on social experiments – it has
been observed that a small unanimous group may be more efficient at persuading others
than a much larger group with a non-unanimous majority. However, before I proceed
to problems related to the two mentioned features of the Sznajd model, namely outflow
dynamics and the unanimity rule, I will start with the first theoretical aspect that I was
working on.

In 2002 I have asked a question about the possibility of introducing something like
a Hamiltonian for the Sznajd model. Due to the lack of symmetry related to outflow
dynamics, I was not able to introduce a Hamiltonian in the strict sense. Instead I have
introduced an object called the disagreement function, which controlled the dynamics
and had the form of the axial next-nearest-neighbor Ising (ANNNI) model Hamiltonian.
However, in contrast to the Hamiltonian, the disagreement function is minimized only
locally. I have considered the model in one [6] and two [5] dimensions using Monte
Carlo simulations, as well as the mean-field approach in [3] and [4]. Moreover, in [4],
using the Boltzmann factor I have introduced a parameter (T ) that played the role of
local temperature. Besides determining phase diagrams, I have also considered the time
evolution of the system. The model occurred to be very interesting exhibiting rich phase
diagrams as well as nontrivial dynamics. As a result, in the years 2002-2005, I have
written a series of four single-author papers ([3]–[6]), which were published in Physical
Review E and became the basis of my habilitation.

After submitting the habilitation dissertation in September 2005, I have started to
study the differences between inflow and outflow dynamics. Article [28], published in
2006 with my Ph.D. student Sylwia Krupa, was the first paper in a series related one
of the major problems in the field of social simulations14. The motivation for this work
came from the observation that Glauber (inflow) and Sznajd (outflow) zero-temperature
dynamics are equivalent for the one dimensional Ising ferromagnet with nearest-neighbor
interactions. To systematically compare the dynamics we have introduced partially syn-
chronous updating. Within such updating in each elementary time step we visit all N sites
of the system and select each of them with probability c as a candidate to get flipped. This
allows to tune the type of updating from random sequential for c = 1/N to synchronous
for c = 1. This type of updating has been used later by Radicchi et al. to investigate the
Ising spin chain at zero temperature for the Metropolis algorithm15 and by us to study
generalized zero-temperature Glauber dynamics [16]. In [28] we have used the method
of mapping an Ising spin system onto the dimer RSA model and we have shown that
already this simple mapping allows us to see the differences between inflow and outflow
zero-temperature dynamics. Moreover, we have investigated both dynamics under par-
tially synchronous updating using Monte Carlo simulations and have shown qualitative
differences between inflow and outflow dynamics.

13C. Castellano, M.A.Muǹoz, R.Pastor-Satorras, Nonlinear q-voter model, Phys. Rev. E 80, 041129
(2009).

14Namely, Macy and Willer (From factors to actors: computational sociology and agent-based modeling.,
Annu. Rev. Sociol. 28, 143166, 2002) observed that there was a little effort to provide analysis of how
results differ depending on the model designs.

15F. Radicchi, D. Vilone, and H. Meyer-Ortmanns, Phase Transition between Synchronous and Asyn-
chronous Updating Algorithms, J. Stat. Phys. 129, 593 (2007).
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Interestingly, it turned out that synchronous and partially synchronous updating in-
troduces a very complex behavior to the generalized zero-temperature Glauber dynamics.
Given that in the past decade low-temperature Glauber dynamics for the one-dimensional
Ising system has been observed experimentally and is now regarded as one of the most
important theoretical approaches in the field of molecular nanomagnets16, my results may
have far reaching consequences. Moreover, in general the relaxation of Ising ferromagnets
with zero-temperature spin-flip dynamics exhibits very complex behavior17.

Therefore I have continued the work on this topic. In [1] I have investigated the re-
laxation to the ground state, after a quench from high temperature, for one-dimensional
zero-temperature Glauber dynamics18 under synchronous updating. Using Monte Carlo
simulations and MFA, I have shown the existence of a discontinuous phase transition
between ferromagnetic and antiferromagnetic phases induced by parameter W0, which
describes the probability of flipping the spin in the case in which the energy of the system
does not change after the flip (for the Metropolis algorithm W0 = 1 and for the origi-
nal Glauber dynamics W0 = 1

2
). Soon after my paper appeared in Physical Review E,

Yi and Kim published a comment19, in which they repeated and confirmed my results
but additionally provided finite-size scaling. On the basis of the obtained scaling they
claimed that the observed phase transition was continuous, in contrast to my conjecture
of a discontinuous phase transition. Indeed, according to the classical theorem of Lan-
dau, first-order phase transitions are impossible in one-dimensional equilibrium systems.
However, zero-temperature Glauber dynamics under synchronous updating is definitely a
non-equilibrium model and in non-equilibrium statistical mechanics, several models have
been shown to exhibit a first-order transition even in one spatial dimension.20 Therefore,
I decided to look at this issue again more carefully and, as a result, I have published to-
gether with my students another paper on one-dimensional Glauber dynamics [16]. This
time we have considered the more general case of partially synchronous updating. We
have been able to confirm that for the synchronous updating mode there is a discontinu-
ous phase transition between two ordered phases (ferromagnetic and antiferromagnetic).
Three signatures of a discontinuous phase transition have been found in this case: (1)
a jump of the ordering parameter (critical exponent β = 0), (2) phase coexistence, and
(3) hysteresis cycles. Moreover, we have shown that for any other type of updating there
is a continuous order-disorder transition (between the ferromagnetic and so-called active
phases).

Besides working on Glauber (inflow) dynamics, I have been working on outflow dy-

16P. Gambardella et al., Ferromagnetism in one-dimensional monatomicmetal chains, Nature 416, 301-
304 (2002); A. Caneschi et al. Glauber slow dynamics of the magnetization in a molecular Ising chain,
Europhys. Lett. 58, 771-777 (2002)

17A. Lipowski, Anomalous phase-ordering kinetics in the Ising model, Physica A 268, 6-13 (1999); V.
Spirin, P. L. Krapivsky, S. Redner, Fate of zero-temperature Ising ferromagnets, Physical Review E 63,
036118 (2001)

18C.Godrèche, J. M. Luck, Metastability in zero-temperature dynamics: statistics of attractors, J. Phys.:
Condens. Matter 17, S2573-S2590 (2005)

19I.G. Yi, B.J. Kim, Comment on Phase transition in a one-dimensional Ising ferromagnet at zero
temperature using Glauber dynamics with a synchronous updating mode, Phys. Rev. E 83, 033101 (2011).

20See e.g. M. Henkel, H. Hinrichsen, and S. Luebeck, Non-equilibrium Phase Transitions, Springer,
2008.
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namics within the q-voter model. In short, in the q-voter model each individual interacts
with a set of q neighbors (a q-lobby). If all q neighbors share the same state (i.e. the
q-lobby is unanimous) the individual conforms to this state and – as originally proposed
– otherwise (i.e. in case of disagreement) the individual changes its state with probability
ε. However, in some later publications the model with ε = 0 and the outflow dynamics
was studied, as a natural generalization of the Sznajd model.

There are two particularly interesting topics related to the q-voter model. The first,
considered in papers [11], [20] and [25] concerns the recent controversy on the exit prob-
ability21, E(x), for the one-dimensional q-voter model. While for the linear voter model
and the Ising model with Glauber dynamics, E(x) = x is an exact result, in the q-voter
model with q ≥ 2 the exit probability is nonlinear and so far no one has come up with
an exact analytical result, even for q = 2 (i.e. for the Sznajd model). The difficulties to
find the exact solution arise from the fact that the average magnetization in the q-voter
model is not conserved. The first attempt to calculate E(x) analytically, was proposed
independently by our group [25] and by Lambiotte and Redner22. Using the Kirkwood
approximation, we have obtained an analytical formula for the exit probability and have
shown that it agrees very well with computer simulations, even for such initial conditions
for which the Kirkwood approximation cannot be easily justified.

However, three years later, it has been suggested by Galam and Martins23 that our
results are valid only for finite-size systems and the solution should approach a step-like
function for infinite systems. It should be stressed, that this suggestion was taken seriously
due to the approximate nature of the solution presented in [25] and considered again in
[20], where an analytical formula for the exit probability of the general q-voter model
has been provided. This result has been confirmed by later publications.24 Moreover, it
has been shown analytically that the step-like exit probability is an exact result for the
q-voter on the complete graph, but not for a one-dimensional lattice.

The second line of research is related to phase transitions in the generalized q-voter
model. In the basic model, the interactions between individuals were limited to the so-
called conformity. This type of social influence reminds us physicists of ferromagnetic
interactions. However, in real societies conformity, although the most common, is not
the only type of social influence. The second widely recognized social response is non-
conformity, which can take one of two forms:

• Independence – resisting influence. In this case the situation is evaluated indepen-
dently of the group norm. Based on this definition we have argued that independence
plays a role similar to temperature.

• Anticonformity – rebelling against influence. Anticonformists are similar to con-
formists in the sense that both take into account the group norm – conformists agree

21I.e. the probability that the system ends up with all spins up starting with a fraction x of up-spins.
22R. Lambiotte, S. Redner, Dynamics of non-conservative voters, Europhys. Lett. 82, 18007 (2008).
23S. Galam, A.C.R. Martins, Pitfalls driven by the sole use of local updates in dynamical systems,

Europhys. Lett. 95, 48005 (2011).
24See [11] and A.M. Timpanaro, C.P.C. Prado, Exit probability of the one-dimensional q-voter model:

Analytical results and simulations for large networks, Phys. Rev. E 89, 052808 (2014).
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with the norm, anticonformists disagree. This reminds us of anti-ferromagnetic in-
teractions.

Introduction of any of the two types of non-conformity to the basic q-voter model results
in a phase transition between the phase with magnetization (m 6= 0; interpreted in such
models as ‘public opinion’) and status-quo (m = 0). In [18] we have introduced anti-
conformity to the Sznajd model (which corresponds to the q-voter model with q = 2).
We have considered the model on the complete graph which has allowed for an analytical
treatment for infinite and finite systems. We have shown that opinion dynamics can be
understood as a movement of public opinion in a symmetric bistable effective potential
and we have found the full phase diagram for the considered model. We have also shown
that Monte Carlo simulations coincide well with the analytical results already for a system
of size N = 100, which is an important result because for other topologies Monte Carlo
simulations are still the main research tool.

In [17] we have considered the q-voter model with non-conformity for an arbitrary
value of q. In this paper we have asked an important question related to the differences
between two types of non-conformity. Although these differences are very important for
social scientists and visible on the microscopic level, they may be irrelevant from the
physical point of view, in a sense that macroscopic behavior of the system is qualitatively
the same under both types non-conformity. Therefore, we have considered two models –
the q-voter model with independence and the q-voter model with anti-conformity. Again,
we have limited our study to the topology of the complete graph, to get exact analytical
results. Surprisingly, we have observed that there are significant qualitative differences
between the two models. In particular, we have shown that in the model with anti-
conformity the critical value of noise increases with parameter q, whereas in the model
with independence the critical value of noise decreases with q. Moreover, in the model
with anti-conformity the phase transition is continuous for any value of q, whereas in
the model with independence the transition switches from continuous to discontinuous at
q = 6. I believe that our results are particularly important for modeling opinion dynamics,
because previously the problem was neglected or even unnoticed in the field.

The next paper in the series, [14], was written at the invitation of prof. Sidney
Redner and published in the special issue Statistical Mechanics and Social Sciences of the
Journal of Statistical Physics. In this paper we have further studied the independence vs.
anti-conformity issue, originally initiated in [17]. In addition to the introduction of the
generalized q-voter model with threshold and finding the phase diagram for this model,
I devoted five chapters (10 pages) to the review of the opinion dynamics literature. My
aim was to bring the social knowledge and literature to sociophysicists and to describe
physical concepts useful for opinion dynamics modeling in a form understandable to social
scientists. I believe I have succeeded. Although the paper was published only very
recently, it has already received 29 citations according to Google Scholar and 9 citations
(without self-citations) according to Web of Science. Moreover, shortly after publication
of this article I was invited to several prestigious scientific events. In particular, to give
a tutorial lecture on opinion dynamics at the Spring Meeting of the German Physical
Society in Berlin (March 2015), a plenary lecture at the 7th Conference on Behavioral
Economics (May 2014) and the inaugural lecture at the University of Social Sciences and
Humanities (Wroc law Campus; October 2014).
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The question: Do the modeling assumptions we make regarding social interactions
have substantial impact on the simulated behavior of the system as a whole or not? that
inspired me to work on the previously discussed papers was also the motivation for the
most recent article [9], published in PLoS ONE and devoted to the problem known is
psychology as the person-situation debate. The debate, started in the late 1960s, refers to
the controversy concerning whether the personal traits or the situation is more important
in determining a person’s behavior. Studying two variants (person vs. situation) of the
same agent-based model of opinion formation, we have shown that the decision to choose
either personal traits (a fraction p of agents in the society are permanently conformists
and 1 − p permanently non-conformists) or the situation (each agent behaves as non-
conformist with probability p and as conformist with probability 1 − p) as the primary
factor driving social interactions is of critical importance even in the case of a complete
graph. I strongly believe that this sensitivity to modeling assumptions has far reaching
consequences also beyond opinion dynamics, since agent-based models are becoming a
popular tool among economists and policy makers and are often used as substitutes of
real social experiments.

In my opinion, the problem is also interesting from the physical point of view because
it is similar in spirit to the discussion regarding quenched vs. annealed disorder. The latter
has recently regained popularity – this time in the context of complex networks. One of
the analytical methods used in this field, the so-called heterogeneous mean field approach,
i.e. an improved mean-field theory that accounts for heterogeneity of a complex network,
relies on replacing a real (or quenched) network by a weighted, fully connected graph (or
annealed).25 The question that arises is whether this substitution is justified, or rather –
when is it appropriate.26 The answer may be nontrivial. My initial guess regarding the
person vs. situation modeling setup was that there would be no significant differences
between the two approaches on the macroscopic scale, at least in the case of the complete
graph. And this indeed was the reply I was giving when asked on different occasions.
Only recently have I realized that this problem – while very difficult, if possible at all, to
solve via social experiments – could be easily addressed within a microscopic agent-based
model. And the obtained results were stunning – assuming a person-specific response
to social influence at the microscopic level generally leads to a completely different and
a less realistic aggregate or macroscopic behavior than an assumption of a situation-
specific response [9]; a result that has been reported by social psychologists for a range
of experimental setups, but has been downplayed or ignored in the opinion dynamics
literature.

25See e.g. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Critical phenomena in complex networks,
Rev. Mod. Phys. 80, 12751335 (2008).

26A.N. Malmi-Kakkada, O.T. Valls, Ch. Dasgupta, Ising model on a random network with annealed or
quenched disorder, Physical Review B 90, 024202 (2014).
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2.2 Achievements in the area of teaching and advis-

ing

I have always spent a lot of time preparing for and felt enthusiastic about teaching classes
(lectures, computer labs and exercises) to undergraduate and graduate students, for details
see Section 3.5.1. While working at the University of Wroc law (until September 2013),
in addition to standard classes such as Theoretical Mechanics, Statistical Physics, Com-
puter Modeling or Theory of Phase Transitions, I have prepared several elective courses
that turned out to be very popular among the students (including English-language lec-
tures Nonlinear Dynamics and Nonequilibrium Phase Transitions). However, the most
successful courses were completely original and unusual, going far beyond the standard
lecture-discussion class form. In 2000-2001 I offered a course called Exotic Statistical
Physics, which introduced undergraduate students to the new field of interdisciplinary
applications of statistical physics. Being a mix of lectures, student seminars and problem
solving, this course attracted students from experimental, theoretical and computational
physics curricula. In the same spirit of developing passion and creativity, in the years
2012-2013 I offered a course called Modeling – Criticality and Complexity. This course
had a modern, interactive form which included discussions, brainstorming, student presen-
tations, problem solving and a mini-workshop at the end. Students had the opportunity
not only to learn about new trends in modeling complex systems and non-equilibrium
phase transitions, but also to participate in the research process itself – from the birth
of the model, through a review of the literature and model analysis, to the presentation
of the results. During these activities I had the pleasure to work with the best under-
graduate and graduate students (including Karol Suszczyński, Rafa l Topolnicki, Maciej
Tabiszewski and Marcin Wolański), which resulted in articles published in prestigious sci-
entific journals ([10], [11], [16], [19], [20], [33]). For my involvement in teaching, in 2011 I
was awarded the Medal of the Commission of National Education.

In the years 1999-2014 I was the supervisor in 25 M.Sc. dissertations at the University
of Wroc law (UWr). During this period I was also a reviewer of more than 30 M.Sc./B.Sc.
theses at UWr and NTNU (Trondheim, Norway). Moreover, I have been the supervisor
in three Ph.D.’s (two completed, one ongoing) in physics, see Section 3.5.2, and in the
years 2011-2014 I was a reviewer of 4 doctoral dissertations, see Section 3.5.3.

In 2013, I have moved to the Wroc law University of Technology (PWr), where I am
currently employed on the position of (Extraordinary) Professor27 in the Department
of Theoretical Physics. In addition to teaching undergraduate and graduate courses in
the Physics and Applied Math curricula at PWr, since November 2013 I have been the
co-advisor (with prof. Antoni Mituś) of the Society of Physics Students Nabla. In the
years 2013-2014 I have organized a series of lectures devoted to modeling and analysis of
complex systems for the Nabla students.

27In Polish: profesor nadzwyczajny.
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2.3 Information about activities popularizing science

and organizational work

I have always spent a lot of time and committed myself to organizational work and popu-
larizing science. I took part in the organization of nine international scientific conferences
(including the Max Born Symposia and the Winter Schools in Theoretical Physics, for
details see Section 3.5.7) and I was the Director of three of them. I am the most proud
of organizing the 47th Winter School in Theoretical Physics Simple Models for Complex
Systems, in the year 2011. The school was intended not only to provide young people with
the knowledge related to a relatively new, intensely growing and a highly interdisciplinary
field of complex systems, but also to integrate the academic community. Our 12 lecturers
from around the world were not only recognized experts in the field, but also excellent
teachers who knew how to introduce newcomers to the fascinating interdisciplinary ‘world
of complex systems’. Due to the highly interdisciplinary nature of the School, not only
physicists, but also mathematicians, computer scientists, economists and social scientists
decided to participate in the meeting. In total, 75 people from around the world attended
the School.

The idea of crossing borders between different, often seemingly distant areas, was also
the motivation for establishing the UNESCO Chair of Interdisciplinary Studies at the
University of Wroc law (http://www.kusi.ift.uni.wroc.pl). The first chairman and founder
was prof. Andrzej Pȩkalski, whose dream was to create an international research center
of interdisciplinary education. From the very beginning I was actively involved in the
process of creating and then running the Chair. In the years 2011-2013, I was the Head
of the Chair.

One of my favorite activities related to the academia is popularizing science. I have
been always active in the field, offering lectures to non-specialists, among other at the
University of the Third Age, charities, schools and the Lower-Silezia Science Festival (see
Section 3.5.6). I am also the author of several popular-science articles, three of them
published in Wiedza i Życie, a popular Polish journal serving the community in a similar
way as Scientific American does worldwide.
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Chapter 3

A detailed list of professional
achievements

3.1 Information about scientific publications

3.1.1 Information about citations

The number of citations indexed in Web of Science (data for 31.03.2015) is 914 without
self-citations and the Hirsch index is equal to 12.1

My publications have been also cited about 100 times2 in books, including such mono-
graphs as:

• Parongama Sen, Bikas K. Chakrabarti, Sociophysics: An Introduction, Oxford Uni-
versity Press (2013)

• Francisek Slanina, Essentials of Econophysics Modelling, Oxford University Press
(2013)

• Serge Galam, Sociophysics: A Physicist’s Modeling of Psycho-political Phenomena,
Springer (2012)

• Willi-Hans Steeb, The Nonlinear Workbook: Chaos, Fractals, Cellular Automata,
Neural Networks, World Scientific (2011)

• Rodolfo Baggio, Jane Klobas, Quantitative Methods in Tourism, Channel View Pub-
lications (2011)

• Tom Siegfried, A Beautiful Math: John Nash, Game Theory, and the Modern Quest
for a Code of Nature, National Academies Press (2006)

• Dietrich Stauffer et al., Biology, Sociology, Geology by Computational Physicists,
Elsevier (2006)

1Excluding self-citations of all authors. Hirsch index is calculated automatically by Web of Science.
2Without self-citations. Due to the lack of international databases of citations in books the provided

numer of citations is only approximate. It was obtained by searching Google Books.
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• Sergio Albeverio, Volker Jentsch, Holger Kantz, Extreme Events in Nature and So-
ciety, Springer (2006)

• Philip Ball, Critical Mass: How One Thing Leads to Another, Macmillan (2006)

• David P. Landau, Kurt Binder, A Guide to Monte Carlo Simulations in Statistical
Physics, Cambridge University Press (2002)

3.1.2 List of single-author articles in JCR-listed journals

List of single-author publications with actual values of the 2 and 5-year impact factors
(IF2Y i IF5Y )3 and the number of citations (CIT) indexed in Web of Science (excluding
self-citations of all authors)4:

[1] K. Sznajd-Weron, Phase transition in a one-dimensional Ising ferromagnet at zero
temperature using Glauber dynamics with a synchronous updating mode, Phys. Rev.
E 82, 031120 (2010); [IF2Y = 2.326, IF5Y = 2.302, CIT = 2]

[2] K. Sznajd-Weron, Sznajd model and its applications, Acta Physica Polonica B 36
(2005); [IF2Y = 0.998, IF5Y = 0.742, CIT = 65]

[3] K. Sznajd-Weron, Metastabilities in the degenerated phase of the two-component
model, Phys. Rev. E 72, 026109 (2005); [IF2Y = 2.326, IF5Y = 2.302, CIT = 0]

[4] K. Sznajd-Weron, Mean-field results for the two-component model, Phys. Rev. E
71, 046110 (2005); [IF2Y = 2.326, IF5Y = 2.302, CIT = 1]

[5] K. Sznajd-Weron, Dynamical model of Ising spins, Phys. Rev. E 70, 037104 (2004);
[IF2Y = 2.326, IF5Y = 2.302, CIT = 13]

[6] K. Sznajd-Weron, Controlling simple dynamics by a disagreement function, Phys.
Rev. E 66, 046131 (2002); [IF2Y = 2.326, IF5Y = 2.302, CIT = 19]

[7] K. Sznajd-Weron, Instabilities in population dynamics, Eur. Phys. J. B 16, 183
(2000); [IF2Y = 1.463, IF5Y = 1.515, CIT = 7]

[8] K. Sznajd-Weron, Change of a continuous character caused by gene flow. An ana-
lytical approach, Physica A 264, 432 (1999); [IF2Y = 1.772, IF5Y = 1.684, CIT = 0]

3.1.3 List of multi-author articles in JCR-listed journals

List of single-author publications with actual values of the 2 and 5-year impact factors
(IF2Y i IF5Y ) and the number of citations (CIT) indexed in Web of Science (excluding
self-citations of all authors):

3Impact Factors are taken from the report published in 2014.
4Data for 31.03.2015.
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[9] K. Sznajd-Weron, J. Szwabiński, R. Weron, ”Is the Person-Situation Debate Impor-
tant for Agent-Based Modeling and Vice-Versa?” PLoS ONE 9(11), e112203 (2014);
[IF2Y = 3.543, IF5Y = 4.015, CIT = 0]

[10] A. Kowalska-Pyzalska, K. Maciejowska, K. Suszczyński, K. Sznajd-Weron, R. Weron,
Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs,
Energy Policy 72, 164-174 (2014); [IF2Y = 2.696, IF5Y = 3.402, CIT = 1]

[11] K. Sznajd-Weron, K. Suszczyński, Nonlinear q-voter model with deadlocks on the
Watts-Strogatz graph, J. Stat. Mech. P07018 (2014); [IF2Y = 2.056, IF5Y =
1.914, CIT = 0]

[12] K. Sznajd-Weron, J. Szwabiński, R. Weron, T. Weron, Rewiring the network. What
helps an innovation to diffuse?, J. Stat. Mech. P03007 (2014); [IF2Y = 2.056, IF5Y =
1.914, CIT = 1]

[13] P. Przyby la, K. Sznajd-Weron, R. Weron, Diffusion of innovation within an agent-
based model: Spinsons, independence and advertising, Advances in Complex Systems
17, 1450004 (2014); [IF2Y = 0.786, IF5Y = 0.918, CIT = 0]

[14] P. Nyczka, K. Sznajd-Weron, Anticonformity or Independence? – Insights from
Statistical Physics, Journal of Statistical Physics 151, 174-202 (2013); [IF2Y =
1.284, IF5Y = 1.239, CIT = 9]

[15] A. Kowalska-Styczeń, K. Sznajd-Weron, Access to information in word of mouth
marketing within a cellular automata model, Advances in Complex Systems 15,
1250080 (2012); [IF2Y = 0.786, IF5Y = 0.918, CIT = 1]

[16] B. Skorupa, K. Sznajd-Weron, R. Topolnicki, Phase diagram for a zero-temperature
Glauber dynamics under partially synchronous update, Phys. Rev. E 86, 051113
(2012); [IF2Y = 2.326, IF5Y = 2.302, CIT = 0]

[17] P. Nyczka, K. Sznajd-Weron, J. Cis lo, Phase transitions in the q-voter model with
two types of stochastic driving, Physical Review E 86, 011105 (2012); [IF2Y =
2.326, IF5Y = 2.302, CIT = 8]

[18] P. Nyczka, K. Sznajd-Weron, J. Cis lo, Opinion dynamics as a movement in a bistable
potential, Physica A 391, 317-327 (2012); [IF2Y = 1.772, IF5Y = 1.684, CIT = 1]

[19] K. Sznajd-Weron, M. Tabiszewski, A. Timpanaro, Phase transition in the Sznajd
model with independence, Europhys. Lett. 96, 48002 (2011); [IF2Y = 2.269, IF5Y =
2.112, CIT = 10]

[20] P. Przyby la, K. Sznajd-Weron and M. Tabiszewski, Exit probability in a one-dimen-
sional nonlinear q-voter model, Phys. Rev. E 84, 031117 (2011); [IF2Y = 2.326, IF5Y =
2.302, CIT = 7]

[21] G. Kondrat, K. Sznajd-Weron, Spontaneous reorientations in a model of opinion
dynamics with anticonformists, Int. J. Mod. Phys. C 21, 559-566 (2010); [IF2Y =
1.125, IF5Y = 0.949, CIT = 4]
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[22] T. Czarnik, R. Gawda, W. Ko lodziej, D.  La̧tka, K. Sznajd-Weron, R. Weron, Asso-
ciations between intracranial pressure, intraocular pressure and mean arterial pres-
sure in patients with traumatic and non-traumatic brain injuries, Injury, Int. J.
Care Injured 40, 33 (2009); [IF2Y = 2.462, IF5Y = 2.388, CIT = 9]

[23] G. Kondrat, K. Sznajd-Weron, Percolation framework in Ising-spin relaxation, Phys.
Rev. E 79, 011119 (2009); [IF2Y = 2.326, IF5Y = 2.302, CIT = 3]

[24] K. Sznajd-Weron, R. Weron, M. W loszczowska, Outflow dynamics in modeling
oligopoly markets: the case of the mobile telecommunications market in Poland,
J. Stat. Mech. P11018 (2008); [IF2Y = 2.056, IF5Y = 1.914, CIT = 1]

[25] F. Slanina, K. Sznajd-Weron, P. Przyby la, Some new results on one-dimensional
outflow dynamics, Europhys. Lett. 82, 18006 (2008); [IF2Y = 2.269, IF5Y =
2.112, CIT = 18]

[26] G. Kondrat, K. Sznajd-Weron, Three types of outflow dynamics on square and tri-
angular lattices and universal scaling, Phys. Rev. E 77, 021127 (2008); [IF2Y =
2.326, IF5Y = 2.302, CIT = 3]

[27] T. Czarnik, R. Gawda, D.  La̧tka, W. Ko lodziej, K. Sznajd-Weron, R. Weron, Nonin-
vasive measurement of intracranial pressure: Is it possible?,The Journal of Trauma,
Injury Infection and Critical Care, 62(1), 207-211 (2007); [IF2Y = 2.961, IF5Y =
3.204, CIT = 9]

[28] K. Sznajd-Weron, S. Krupa, Inflow versus outflow zero-temperature dynamics in one
dimension, Phys. Rev. E 74, 031109 (2006); [IF2Y = 2.326, IF5Y = 2.302, CIT = 8]

[29] S. Krupa, K. Sznajd-Weron, Relaxation under outflow dynamics with random se-
quential updating, Int. J. Mod. Phys. C , Vol. 16, No. 11, 1771 (2005); [IF2Y =
1.125, IF5Y = 0.949, CIT = 9]

[30] K. Sznajd-Weron, J. Sznajd, Who is left, who is right?, Physica A 351, 593 (2005);
[IF2Y = 1.772, IF5Y = 1.684, CIT = 23]

[31] J.O. Indekeu, K. Sznajd-Weron, Hierarchical population model with a carrying ca-
pacity distribution for bacterial biofilms, Phys. Rev. E 68, 061904 (2003); [IF2Y =
2.326, IF5Y = 2.302, CIT = 1]

[32] K. Sznajd-Weron, R. Weron, How effective is advertising in duopoly markets?, Phys-
ica A 324, 437 (2003); [IF2Y = 1.772, IF5Y = 1.684, CIT = 36]

[33] K. Sznajd-Weron, M. Wolański, In search for the optimal strategy in population
dynamics, Eur. Phys. J. B 25 2, 253 (2002); [IF2Y = 1.463, IF5Y = 1.515, CIT = 5]

[34] K. Sznajd-Weron, R. Weron, A simple model of price formation, Int. J. Mod. Phys.
C 13, 115 (2002); [IF2Y = 1.125, IF5Y = 0.949, CIT = 54]

23



[35] K. Sznajd-Weron, A. Pȩkalski, Model of population migration in a changing habitat,
Physica A 294, 424 (2001); [IF2Y = 1.772, IF5Y = 1.684, CIT = 2]

[36] K. Sznajd-Weron, R. Weron, A new model of mass extinctions, Physica A 293, 559
(2001); [IF2Y = 1.772, IF5Y = 1.684, CIT = 3]

[37] A. Pȩkalski, K. Sznajd-Weron, Population dynamics with and without selection,
Phys. Rev. E 63, 031903 (2001); [IF2Y = 2.326, IF5Y = 2.302, CIT = 5]

[38] K. Sznajd-Weron, J. Sznajd, Opinion evolution in closed community, Int. J. Mod.
Phys. C 11, 1157 (2000); [IF2Y = 1.125, IF5Y = 0.949, CIT = 513]

[39] K. Sznajd-Weron, A. Pȩkalski, Statistical physics model of an evolving population,
Physica A 274, 91 (1999); [IF2Y = 1.772, IF5Y = 1.684, CIT = 3]

[40] K. Sznajd-Weron, A. Pȩkalski, Evolution of populations in a changing environment,
Physica A 269, 527 (1999); [IF2Y = 1.772, IF5Y = 1.684, CIT = 1]

[41] K. Sznajd-Weron, A. Pȩkalski, Change of a continuous character caused by gene
flow. A Monte Carlo study, Physica A 259, 457 (1998); [IF2Y = 1.772, IF5Y =
1.684, CIT = 2]

[42] K. Sznajd-Weron, A. Pȩkalski, Evolution through stabilizing selection and gene flow,
Physica A 252, 336 (1998); [IF2Y = 1.772, IF5Y = 1.684, CIT = 1]

[43] I. Mróz, A. Pȩkalski, K. Sznajd-Weron, Conditions for adaptation of an evolving
population, Phys. Rev. Lett. 76 3025 (1996); [IF2Y = 7.728, IF5Y = 7.411, CIT =
14]

3.1.4 Conference papers

1. K. Sznajd-Weron, J. Sznajd (2006) Personal Versus Economic Freedom, Proceedings
of the Third Nikkei Econophysics Symposium Practical Fruits of Econophysics, H.
Takayasu Ed., Springer-Verlag, Tokyo 355-360.

2. A. Kowalska-Pyzalska, K. Maciejowska, K. Sznajd-Weron, R.Weron (2014) Modeling
consumer opinions towards dynamic pricing: An agent-based approach, IEEE Con-
ference Proceedings, 11th International Conference on the European Energy Market
(EEM’14), 28-30 May 2014, Kraków, Poland, DOI 10.1109/EEM.2014.6861272.

3.1.5 Edited volumes

1. K. Sznajd-Weron, ed. (2004) Statistical Physics outside pure Physics Physica A 336

2. A. Pȩkalski, K. Sznajd-Weron, eds. (2000) Exotic Statistical Physics, Physica A 285

3. R. Kutner, A. Pȩkalski, K. Sznajd-Weron, eds. (1999) Anomalous Diffusion: From
Basics to Applications, Lecture Notes in Physics, Springer-Verlag, Berlin.
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3.2 Information about scholarly activities

3.2.1 Participation in conferences

Invited and plenary talks

1. Can agent-based modeling replace a social experiment?, plenary lecture, 7th Confer-
ence of the Academic Economic Psychology Society, University of Social Sciences
and Humanities, Wroc law 09-10.05.2014

2. Agent Based Modeling in Energy Markets, 2nd Energy Finance Christmas Work-
shop, Macquarie University, Sydney, 13-14.12.2012

3. Phase transition in the Sznajd model with nonconformity, The Unexpected Confer-
ence – SOCIOPHYSICS: Do humans behave like atoms?, CREA-Ecole Polytech-
nique, Paris, 13-16.11.2011

4. Simple models for complex systems – toys or tools?, Ising Lectures 2011, 14th Annual
Workshop on Phase Transitions and Critical Phenomena, Lviv, 11-15.04.2011

5. Can we treat people like particles? - a simple model of opinion formation, Inter-
national Symposium Computational philosophy: lessons from simple models, Niels
Bohr Institute, Copenhagen 11-13.10.2007

6. Opinion dynamics in personal and economical areas do they differ?, International
School on Complexity Statistical Physics of Social Dynamics: Opinions, Semiotic
Dynamics, and Language, Erice (Sicily) 14-19.07.2007

7. From social psychology to sociology - a physicist’s point of view, AKSOE Conference
Physics of Socio-economic Systems, Regensburg 27.03.2007

8. Personal versus economic freedom, AKSOE Conference Physics of Socio-economic
Systems, Dresden 26-31.03.2006

9. Opinion evolution in sociophysics, XI Summer School Fundamental Problems in
Statistical Physics FPSPXI, Leuven 04-17.09.2005

10. Kto jest prawica̧, kto jest lewica̧? (Who is right, who is left?), IX Mini Symposium
in Statistical Physics, Czȩstochowa 05-06.12.2004

11. Sznajd model and its applications, 1st Polish Econo- and Sociophysics Symposium,
Warszawa 19-20.11.2004

12. Personal versus economic freedom, 3rd Nikkei Econophysics Workshop, Tokyo 09-
11.11.2004

13. Physics beyond the Physics, plenary lecture on XXXVII Congress of Polish Physi-
cists, Gdańsk 15-18.09.2003

25



Selected contributed talks and posters

1. The list of contributed talks includes in particular:

(a) Diffusion of innovation within an agent-based model, European Conference on
Complex Systems (ECCS’13), Barcelona 16-20.09.2013

(b) Modelowanie dyfuzji innowacji (Modeling innovation diffusion), 42nd General
Meeting of Polish Physicists, Poznań 8-13.09.2013

(c) Spontaneous reorientations in a model of opinion dynamics with anticonformists,
Middle European Cooperation in Statistical Physics MECO 35, Pont-a-Mousson
15-19.03.2010

(d) Dogadamy siȩ czy nie? – o modelowaniu ewolucji opinii w socjofizyce (Will we
reach a consensus or not? – on modeling opinion evolution in sociophysics),
2nd Polish Econo- and Sociophysics Symposium, Krakow 21-22.04.2006

2. The list of posters includes in particular (only conference/school names are pro-
vided): Altenberg Summer School on Fundamental Problems in Statistical Physics
(Altenberg 1997), Middle European Cooperation in Statistical Physics – MECO 22
(Szklarska Poreba 1997), MECO 24 (Lutherstadt-Wittenberg 1999), MECO 27 (So-
pron 2002), MECO 28 (Saarbrücken 2003), MECO 29 (Bratislava 2004), European
Conference on Complex Systems ECCS’12 (Brussels 2012).

3.2.2 Selected invited seminar talks

Invited seminar talks abroad:

1. Diffusion of innovation within an agent-based model, FIME (Finance for Energy
Market) seminar, Institut Henri Poincarré, Paris 7.11.2014

2. Social Physics or Sociophysics?, Joint Seminar: Department of Physics and Cen-
tre for Computational Science and Engineering, National University of Singapore,
Singapore 11.12.2012

3. Social Physics or Sociophysics?, Physics Friday Colloquia, Department of Physics
Norwegian University of Science and Technology, Trondheim 16.09.2011

4. Can we treat people like particles? – a simple model of opinion dynamics, De-
partment of Physics Norwegian University of Science and Technology, Trondheim
03.05.2009

5. Opinion Formation, Irrational Thinking and Spreading of Minorities, Chair of So-
ciology, in particular of Modelling and Simulations, ETH Zurich, Zurich 18.12.2007

6. A simple model of opinion formation, Institute of Industrial Science, University of
Tokyo, Tokyo 12.11.2004

7. A simple model of opinion formation, Department of Physics, Tokyo Metropolitan
University, Tokyo 10.11.2004
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8. New dynamical model of Ising spins, Ikegami Laboratory, University of Tokyo, Tokyo
8.11.2004

9. From social psychology to sociology - a physicist’s point of view, Division of Con-
densed Matter Physics of the Institute of Physics of the Academy of Sciences of the
Czech Republic, Prague 6.11.2003

Invited seminar talks in Poland:

1. Jak modelować dyfuzjȩ innowacji? (How to model diffusion of innovation? ), Col-
legium Physicum, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań
5.11.2013

2. Czy możliwe sa̧ przej́scia fazowe w uk ladach jednowymiarowych? (Are phase tran-
sitions possible in one-dimensional systems? ), Seminar of the Institute of Physics,
Wroc law University of Technology, Wroc law 7.01.20135

3. Proste modele uk ladów z lożonych (Simple models of complex systems), Institute of
Physics, Opole University, Opole 6.11.2011

4. Phase transitions in 1D kinetic Ising model, Coherence-Correlations-Complexity
Seminar, Wroc law University of Technology, Wroc law 17.11.2010

5. Ludzi można traktować jak cza̧stki, tylko po co? – o sensie socjofizyki (People can
be treated as particles, but what for? – about the sense of sociophysics), Świerk
Computing Centre, Świerk 19.05.2010

6. Ludzi można traktować jak cza̧stki, tylko po co? – o sensie socjofizyki (People can
be treated as particles, but what for? – about the sense of sociophysics), Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Wroc law
10.03.2010

7. Ludzi można traktować jak cza̧stki, tylko po co? (People can be treated as parti-
cles, but what for? ), Seminar of the Institute of Physics, Wroc law University of
Technology, Wroc law 22.02.2010

8. Nowy model spinów Isinga – czyli o tym jak nauki spo leczne zainspirowa ly fizyka (A
new model of Ising spins, or how social science inspired physicists.), Dynamics of
Complex Systems Seminar, Warsaw University of Technology, Warsaw 23.10.2006

9. Socjalísci czy Libera lowie? – socjofizyka w polityce (Socialists or Liberals? – socio-
physics in politics), Faculty of Physics and Astronomy, University of Zielona Góra,
Zielona Góra 25.10.2005

10. Czy ludzi można traktować jak cza̧stki? (Can people be treated as particles? ), Sem-
inar on Statistical Physics, University of Warsaw, Warsaw 7.05.2004

11. Nowy dynamiczny model spinów isingowskich (A new dynamic model of Ising spins.),
Seminar on Statistical Physics, University of Warsaw, Warszawa 7.05.2004

5At that time I was still working at the University of Wroc law.
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3.2.3 Editorial board membership

• Associate Editor, Frontiers in Physics, section Interdisciplinary Physics, Frontiers,
since 2013

• Editorial Board, International Journal of Statistical Mechanics, Hindawi, since 2013

• Advisory Editor, Physica A: Statistical Mechanics and its Applications (IF5Y =
1.684), Elsevier, since 2010

3.2.4 List of research projects

2014-2016 Senior Investigator, India-Polish Inter-Governmental Science & Technology
Cooperation Programme, Data Driven Approaches for Inferring Opinion Dynamics
on Social Networks, Indian Institute of Technology Kharagpur, India

2014-2016 Senior Investigator, Polish Science Foundation (NCN) grant no. 2013/11/B/
HS4/01061, Ekonomiczne konsekwencje kszta ltowania siȩ opinii i podejmowania de-
cyzji przez konsumentów: Modelowanie agentowe dyfuzji innowacji (Economic con-
sequences of consumer opinion formation and decision making: Agent-based model-
ing of innovation diffusion), PWr

2014-2016 Supervisor in the postdoc research grant FUGA3 lead by Dr. Anna Chmiel,
NCN grant no. 2014/12/S/ST3/00326, Procesy nierównowagowe na sieciach wielo-
poziomowych (Non-equilibrium processes on multilevel networks), PWr

2011-2014 Principal Investigator, NCN grant no. 2011/01/B/ST3/00727, Zastosowanie
prostych modeli spinowych w marketingu spo lecznym i komercyjnym (Simple spin
models in applications to social and commercial marketing), UWr

2011-2014 Senior Investigator, NCN grant no. 2011/01/B/HS4/02740, Modelowanie dy-
namiki zachowań konsumentów na rynkach oligopolistycznych za pomoca̧ automatów
komórkowych (Modeling of consumer behavior dynamics in oligopoly markets by cel-
lular automata), Silesian University of Technology, Poland

2007-2009 Principal Investigator, Polish Ministry grant N N202 0194 33, Nowa lokalna
dynamika spinów Isinga z punktu widzenia teorii nierównowagowych uk ladów dy-
namicznych i zastosowań w modelowaniu grup spo lecznych (A new local dynamics
of Ising spins from the point of view of non-equilibrium dynamical systems and ap-
plications in modeling social groups), UWr

2007-2009 Principal Investigator, ‘Supervisory grant’ for Sylwia Krupa, Polish Ministry
grant N N202 0907 33, Analiza uk ladów spinów isingowskich z zero-temperaturowymi
lokalnymi dynamikami (An analysis of Ising spin systems with zero-temperature local
dynamics), UWr

2000-2002 Senior Investigator, KBN grant no. 2p03B2718, UWr
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1999-2000 Principal Investigator, Project for young researchers, University of Wroclaw
2318/W/IFT, UWr

1997-1998 Principal Investigator, Project for young researchers, University of Wroclaw
2201/W/IFT, UWr

3.2.5 Information about research group leadership

2011-2014 Head of a team of 5 researchers and students, NCN OPUS grant no. 2011/
01/B/ST3/00727, IFT UWr

2012-2013 Head of UNESCO Chair of Interdisciplinary Studies (12-14 researchers), IFT
UWr

2009-2013 Head of Complex Systems and Nonlinear Dynamics Division (8-10 researchers,
4-6 Ph.D. students), IFT UWr

3.3 Information about cooperation with the social

and economic environment

• Reviewer of Polish Ministry grants

• Course leader and lecturer Numerical skills, in collaboration with local government
and business (including McKinsey and Google) under the project Wroclaw graduate,
Program to prepare staff for the modern service sector, University of Wroclaw and
Wroclaw city (2010-2011)

• Scientific collaboration with Easygreen Lejkowski Cezary in promoting behaviors
and actions consistent with the Green Standards (Green Brand and Global Green
Consulting Center) (2010-2013)

3.4 Information about international cooperation

3.4.1 Internships and scientific visits

Due to family reasons I have rejected several invitations for longer visits or internships.
However, I have accepted invitations for short-terms visits related usually to invited lec-
tures (see Sec. 3.2.2). Only three times I have decided to go for longer visits (above 7
days):

1. Department of Physics, Norwegian University of Science and Technology, Trondheim
(9 - 19.09.2011)

2. Department of Physics, Norwegian University of Science and Technology, Trondheim
(30.04 - 10.05.2009)

3. Institute of Industrial Science, University of Tokyo, Tokyo (8-20.11.2004)
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3.4.2 Refereeing for JCR-listed journals

Extensive peer-review service for:6

• Physical Review Letters [IF=7.411] and Physical Review E [IF=2.302] – 30 reports

• Physica A [IF=1.684] – 33 reports

Regular peer-review service for:

• Advances in Complex Systems [IF=0.918]

• European Physical Journal B [IF=1.515]

• Europhysics Letters [IF=2.112]

• Journal of Statitical Physics [IF=1.239]

• International Journal of Modern Physics C [IF=0.949]

• Physics Letters A [IF=1.706]

Ad-hoc peer-review service for:

• Behavioural Processes [IF=1.760]

• Complexity [IF=1.290]

• Journal of the Royal Society – Interface [IF=4.875]

3.4.3 Membership in international organizations and societies

1. Member of Complex Systems Society, since 2012

3.4.4 Participation in international expert committees

1. Member of the international jury for Young Scientist Award (YSA) in Socio- and
Econophysics 2015

2. Member of habilitation jury for Laura Hernandez, Laboratoire de Physique Théorique
et Modelisation (LPTM), joint laboratory of CNRS and Université de Cergy Pon-
toise (December 2014)

3. Member of international organizing committee Cultural and Opinion Dynamics:
Modeling, Experiments and Challenges for the future, ECCS 2014 Satellite, Lucca,
24.09.2014

4. Member of international organizing committee Cultural and Opinion Dynamics:
Modeling, Experiments and Challenges for the future, ECCS 2013 Satellite, Barcelona,
18-19.09.2013

65-year impact factors provided.
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5. Member of scientific committee Cultural and Opinion Dynamics: Modeling, Exper-
iments and Challenges for the future, ECCS 2012 Satellite, Brussels, 5-6.09.2012

6. Member of scientific committee Cultural and Opinion Dynamics: Modeling, Exper-
iments and Challenges for the future, ECCS 2011 Satellite, Wien, 14-15.09.2011

7. Referee of M.Sc thesis, Department of Physics, NTNU, Trondheim, Norwegia

3.4.5 Participation in international research groups

1. Investigator in international project Data Driven Approaches for Inferring Opinion
Dynamics on Social Networks sponsored by India-Polish Inter-Governmental Science
& Technology Co

2. Collaboration with prof. Frantisek Slanina, Institute of Physics, Czech Academy of
Sciences, Praha, Czech (from 2003)

3. Collaboration with prof. Joseph Indekeu, Theoretical Physics Section, Katholieke
Universiteit Leuven, Belgium (from 1997)

3.5 Information about teaching/advising, populariz-

ing and organizational activities

3.5.1 Courses taught

1. Modern theory of phase transitions (lecture + discussion class in English), Faculty
of Fundamental Problems of Technology, PWr (2013-2014)

2. Phase transitions in complex systems (lecture in English), Faculty of Fundamental
Problems of Technology, PWr (2014)

3. Mechanics and thermodynamics (lecture + discussion class), Faculty of Fundamental
Problems of Technology, PWr (2013-2015)

4. Waves and Electromagnetism (lecture + discussion class + laboratory), Faculty of
Fundamental Problems of Technology, PWr (2014)

5. Modeling – criticality and complexity (lecture + discussion class + computer labo-
ratory), Faculty of Physics and Astronomy, UWr (2012-2013)

6. Classical theoretical physics 2 (lecture), Faculty of Physics and Astronomy, UWr
(2011-2013)

7. Non-equilibrium phase transitions (lecture), Faculty of Physics and Astronomy, UWr
(2011)

8. Statistical physics 1 (lecture), Faculty of Physics and Astronomy, UWr (2006-2012)
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9. Theory of phase transitions and critical phenomena (lecture), Faculty of Physics
and Astronomy, UWr (2006-2012)

10. Computer modeling (lecture + computer laboratory), Faculty of Physics and As-
tronomy, UWr (2000-2013)

11. Diploma seminar, Faculty of Physics and Astronomy, UWr (2008-2010)

12. Exotic statistical physics (seminar), Faculty of Physics and Astronomy, UWr (2000-
2001)

3.5.2 Advising doctoral students

1. Supervisor: Piotr Przyby la Nierównowagowa dynamika spinów isingowskich z punktu
widzenia teorii uk ladów z lożonych i zastosowań interdyscyplinarnych (Non-equilibrium
spin dynamics from theoretical and applicative point of view), Faculty of Fundamen-
tal Problems of Technology, PWr, ongoing, Ph.D. opening procedure: 3.12.2013,
expected defence date: 2015/2016

2. Supervisor: Piotr Nyczka Przej́scia Fazowe w uogólnionym modelu q-wyborcy na
grafie zupe lnym (Phase transitions in the generalized q-voter model on the complete
graph), Institute of Theoretical Physics, UWr. Ph.D. defence: 24.02.2015

3. Supervisor: Sylwia Krupa Analiza uk ladów spinów isingowskich z zero-temperaturowymi
lokalnymi dynamikami (Analysis of Ising spin systems with zero-temperature local
dynamics), Institute of Theoretical Physics, UWr. Ph.D. defence: 19.06.2009

3.5.3 Refereeing doctoral and other dissertations

1. dr Agnieszka Czaplicka, Procesy transportu i ewolucja topologii hierarchicznych sieci
z lożonych (Transport processes and topology evolution of hierarchical networks), Fac-
ulty of Physics, Warsaw Technical University (Ph.D. defence: 20.10.2014)

2. dr Maciej Jagielski, Zastosowanie nieliniowego równania Langevina, równania Fokkera-
Plancka oraz modeli b la̧dzeń losowych do opisu dochodów gospodarstw domowych
Polski i Unii Europejskiej (Application of nonlinear Langevin equation, Fokker-
Planck equation and random-walk models to modeling of household incomes in Poland
and EU ), Faculty of Physics, University of Warsaw (Ph.D. defence: 09.06.2014)

3. dr Jacek Wendykier, Sieciowe modele typu drapieżniki i ofiary – zastosowanie w
modelowaniu nowotworów (Predator-prey lattice models – applications to cancer
modeling), Institute of Physics, Opole University (Ph.D. defence: 10.10.2013)

4. dr Tomasz Gubiec, Modele b la̧dzenia losowego w czasie cia̧g lym z pamiȩcia̧. Za-
stosowanie do opisu dynamiki rynków finansowych (Continuous-time random walk
models with memory. Applications to financial market dynamics), Faculty of Physics,
University of Warsaw (Ph.D. defence: 12.12.2011)

5. reviewer of over 30 M.Sc. and B.Sc. dissertations
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3.5.4 Popular science and related articles (in Polish)

1. G. Kontrym-Sznajd, K. Sznajd-Weron Jak zainteresować uczniów fizyka̧? (How
to get students interested in physics? ), Problemy dydaktyki fizyki, Wroc lawskie
Wydawnictwo Oświatowe ATUT, Centrum Edukacji Nauczycielskiej Uniw. Wroc l.,
Wroc law-Czeszów 2013, ISBN 978-83-7432-992-7str. 57-66

2. A. Pȩkalski, K. Sznajd-Weron, Uk lady z lożone na Uniwersytecie Wroc lawskim (Com-
plex systems at the University of Wroc law), Przegla̧d Uniwersytecki, grudzień 2004

3. K. Sznajd-Weron, W sieci ma lego świata (In the small world network), Wiedza i
Życie luty/04, 68-71 (2004)

4. K. Sznajd-Weron, Seks wed lug wzoru (Sex according to a formula), Wiedza i Życie
kwiecień/02, 46-49 (2002)

5. K. Sznajd-Weron, Opowieść o fizyce egzotycznej (A tale of exotic physics), Wiedza
i Życie październik/01, 46-49 (2001)

3.5.5 Development of e-learning materials

1. Preparation of slides (pdf) and problems (pdf, xls) for nearly all credit courses
taught. Materials for courses taught in the current semester are available for stu-
dents from my webpage http://www.if.pwr.wroc.pl/˜katarzynaweron

2. Lecture notes Fizyka statystyczna (Statistical physics) on
http://panoramix.ift.uni.wroc.pl and on my webpage

3. Lecture notes Teoria przej́sć fazowych i zjawisk krytycznych (Theory of phase tran-
sitions and critical phenomena) on http://panoramix.ift.uni.wroc.pl/ and on my
webpage

4. Slides for the course Modelowanie komputerowe (Computer modeling) on
http://panoramix.ift.uni.wroc.pl/

5. Lecture notes and slides for the course Modelarnia – krytyczność i z lożoność (Model-
ing – criticality and complexity) on http://panoramix.ift.uni.wroc.pl/, homepage of
the Faculty of Physics and Astrononomy UWr (POKL projects) and on my webpage

3.5.6 Active participation in events popularizing science

1. Czy psychologia może siȩ spotkać z fizyka̧? (Can psychology meet physics? ), In-
augural lecture at University of Social Sciences and Humanities, Wroc law Faculty
23.10.2014

2. Co w praktyce oznacza nieskończoność? (What does infinity mean in practice? )
Student conference FAK 2014, Wroc law 16.05.2014
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3. A series of lectures on complex systems for Society of Physics Students Nabla, PWr
Wroc law (2013-2014)

4. W sieci jeszcze mniejszego świata – życie na Facebooku i nie tylko (In the network
of an even smaller world – life on Facebook and not only), Student conference FAK
2013, Wroc law 19.05.2013

5. Jaki może być powód rewolucji? Czyli o uk ladach spo lecznych oczami fizyka (What
can be the reason for a revolution? A physicist’s view on social systems), University
of the Third Age, Wroc law 19.11.2012

6. Jaki może być powód rewolucji? Czyli o uk ladach spo lecznych oczami fizyka (What
can be the reason for a revolution? A physicist’s view on social systems), XIV Lower
Silesian Science Festival, Wroc law 21.09.2011

7. Jaki może być powód rewolucji? Czyli o uk ladach spo lecznych oczami fizyka (What
can be the reason for a revolution? A physicist’s view on social systems), Szczecin
Humanistyczny, University of Szczecin, Szczecin 4.04.2011

8. Dogadamy siȩ czy nie? – czyli co ma fizyka do socjologii (Will we reach a consensus
or not? – or what has physics to do with sociology), XII Lower Silesian Science
Festival, Wroc law 19.09.2009

9. Czy ludzi można traktować jak cza̧stki - spojrzenie fizyka (Can we treat people like
particles – A physicist’s view), Polish Sociological Association, Institute of Sociol-
ogy, UWr 15.12.2004

10. Czy Bóg ma przepis? - od chaosu deterministycznego po fraktale (Does God have a
recipe? – from deterministic chaos to fractals), VI Lower Silesian Science Festival,
Wroc law 09.2004

11. Czy ludzi można traktować jak cza̧stki? (Can we treat people like particles? ), War-
saw Agricultural University, Warsaw 6.05.2004

12. Jak przekonywać innych? – socjofizyka: model Sznajdów (How to convince others?
– sociophysics: the Sznajd model), Science Camp of the Polish Children’s Fund,
Świdr-Otwock, 8.05.2003

13. Jak przekonywać innych? czyli socjofizyka (How to convince others? or socio-
physics), VI Lower Silesian Science Festival, Wroc law 09.2003 and Wa lbrzych 10.2003

14. Katastrofy oczami fizyków – od lawin piasku po wielkie wymierania (Physicists’ view
on catastrophes – from sand avalanches to mass extinctions), V Lower Silesian Sci-
ence Festival, Wroc law 20.09.2002 and Wa lbrzych 4.10.2002
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3.5.7 Membership in organizing committees

1. Organizing committee, Cultural and Opinion Dynamics: Modeling, Experiments and
Challenges for the future, ECCS 2014 Satellite, Lucca 24.09.2014

2. Director, CODYM Spring Workshop (CODYM-Spring’14), PWr, Wroc law 7-8.04.2014

3. Organizing committee, Cultural and Opinion Dynamics: Modeling, Experiments and
Challenges for the future, ECCS 2013 Satellite, Barcelona 18.09.2013

4. Director, 47th Winter School in Theoretical Physics Simple Models for Complex
Systems, La̧dek-Zdrój 7-12.02.2011

5. Director, XXIII Max Born Symposium Critical Phenomena in Complex Systems,
Polanica-Zdrój 3-6.09.2007

6. Organizing committee, Workshop on Science for Conservation & Preservation of
Cultural Heritage Research & Education, Wydzia l Chemii Uniwersytetu Wroc lawskiego,
Wroc law 4-5.06.2007

7. Secretary, XVIII Max Born Symposium Statistical Physics Outside Pure Physics,
La̧dek-Zdrój 22-25.09.2003

8. Secretary, 36th Winter School in Theoretical Physics Exotic Statistical Physics,
La̧dek-Zdrój 11-19.02.2000

9. Secretary, XI Max Born Symposium Anomalous Diffusion: from Basis to Applica-
tions, La̧dek-Zdrój 20-27.05.1998

3.5.8 Other organizational activities

1. Secretary of the Polish Physical Society, Section of Physics in Economy and Social
Sciences (2014-2016)

2. Secretary of habilitation commitee for dr hab. Grzegorz Pawlik, PWr (2014)

3. Secretary of habilitation commitee for dr hab. Dariusz Grech, UWr (2013)

4. Co-advisor (with prof. A. Mituś) of the Society of Physics Students Nabla (since
2013)

5. Leader for the teaching of physics at the Faculty of Electrical Engineering PWr
(since 2013)

6. Head of the Disciplinary Board for academic teachers at the Department of Physics
and Astronomy UWr (2012-2013)

7. Member of the faculty team for the quality of education at the Department of
Physics and Astronomy, UWr (2011-2013)
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3.6 Information about awards

2011 Medal of the Commission of National Education, Poland

2010 Rector Award for teaching and organization achievements, UWr

2007 International Young-Scientist Award for Socio- and Econophysics, German Physical
Society

2006 Rector Award for teaching and organization achievements, UWr

2005 Rector Award for scientific achievements, UWr

2003 Scholarship of the Foundation for Polish Science (FNP) for young researchers

2002 Scholarship of the Foundation for Polish Science (FNP) for young researchers

2002 Award of the Ministry of National Education (MEN) for a series of papers on
applications of computer simulation methods, Monte Carlo methods, in biological
evolution and surface adsorption of stiff bars

2000 Rector Award for teaching, UWr

1999 Award of MEN for a series of papers on applications of statistical physics in biology
and sociology

1997 Award of MEN for a series of papers on modeling phenomena in condensed matter
and biological systems

1995 2nd award for M.Sc thesis in physics, Polish Physical Society
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Chapter 4

Information about the most
important scientific achievement

In my opinion, the most important scientific achievement after habilitation is the following
series of ten papers, generally initiated exclusively by my ideas and published with my
students (M. Tabiszewski, R. Topolnicki, K. Suszczyński) or my Ph.D. students (S. Krupa,
P. Przyby la, B. Skorupa, P. Nyczka). They all concern and study the same problem – the
sensitivity of macroscopic properties of non-equilibrium spin models to details introduced
at the microscopic level:

[P0] K. Sznajd-Weron, S. Krupa, Inflow versus outflow zero-temperature dynamics in
one dimension, Phys. Rev. E 74, 031109 (2006).1

[P1] F. Slanina, K. Sznajd-Weron, P. Przyby la, Some new results on one-dimensional
outflow dynamics, Europhys. Lett. 82, 18006 (2008).

[P2] K. Sznajd-Weron, Phase transition in a one-dimensional Ising ferromagnet at zero
temperature using Glauber dynamics with a synchronous updating mode, Phys. Rev.
E 82, 031120 (2010).

[P3] K. Sznajd-Weron, M. Tabiszewski, A. Timpanaro, Phase transition in the Sznajd
model with independence, Europhys. Lett. 96, 48002 (2011).

[P4] P. Przyby la, K. Sznajd-Weron and M. Tabiszewski, Exit probability in a one-dimen-
sional nonlinear q-voter model, Phys. Rev. E 84, 031117 (2011).

[P5] B. Skorupa, K. Sznajd-Weron, R. Topolnicki, Phase diagram for a zero-temperature
Glauber dynamics under partially synchronous update, Phys. Rev. E 86, 051113
(2012).

[P6] P. Nyczka, K. Sznajd-Weron, J. Cislo, Phase transitions in the q-voter model with
two types of stochastic driving, Phys. Rev. E 86, 011105 (2012).

1Although this paper was published before I formally obtained my habilitation, I include it here for
two reasons. Firstly, I submitted my habilitation dissertation in September 2005 and started working on
this paper only in the beginning of 2006. Secondly, it initiated a whole series of papers.
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[P7] P. Nyczka, K. Sznajd-Weron, Anticonformity or Independence? – Insights from
Statistical Physics, Journal of Statistical Physics 151, 174-202 (2013).

[P8] K. Sznajd-Weron, K. Suszczyński, Nonlinear q-voter model with deadlocks on the
Watts-Strogatz graph, J. Stat. Mech. P07018 (2014).

[P9] K. Sznajd-Weron, J. Szwabiński, R. Weron, Is the Person-Situation Debate Impor-
tant for Agent-Based Modeling and Vice-Versa? PLoS ONE 9(11), e112203 (2014).

As I have already written in Section 2.1.3, one of the main problems in the field
of social simulations is, as noted by Macy and Willer2, little effort to provide analysis
of how results differ depending on the model designs. This is a particularly important
problem, since social simulations are often treated as a substitute of the social experiment.
Honestly speaking, a similar problem is present also in sociophysics. Therefore, I have
found it important to clarify at least some of the issues. In this series of papers, I have
asked and tried to answer several questions that can be combined into a single general
question: How do, sometimes seemingly minor, differences introduced at the microscopic
level of the model, manifest at the macroscopic scale? In particular I have focused on the
following:

• Is the outflow dynamics equivalent to the inflow dynamics [P0,P1]?

• What is the role of updating in spin dynamics [P0,P2,P5]?

• How do the stationary properties of the model (e.g. the absorbing state, the
phase diagram) depend on the initial conditions and the size of the influence group
[P1,P3,P4,P6,P8]?

• How do different types of non-conformity (anti-conformity or independence; which
can be treated as noise), introduced at the microscopic level (individuals), manifest
at the macroscopic level (the society) [P3,P6,P7]?

• Do the modeling assumptions regarding the type of agent’s response to the influence
(personal traits vs. situation) have substantial impact on the macroscopic behavior
of the system or not [P9]?

Addressing these questions, I have been able to obtain several interesting theoretical
results regarding first passage properties and phase transitions for the zero-temperature
generalized Glauber dynamics and the q-voter model (for details see Section 2.1.3). There-
fore, I believe that this series of papers will have impact not only on the interdisciplinary
field of complex systems, and in particular on agent-based modeling, but will also con-
tribute to the developing field of non-equilibrium statistical physics.

2M. W. Macy, R. Willer, From factors to actors: computational sociology and agent-based modeling.,
Annu. Rev. Sociol. 28, 143–166 (2002).
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Inflow versus outflow zero-temperature dynamics in one dimension

Katarzyna Sznajd-Weron* and Sylwia Krupa
Institute of Theoretical Physics, University of Wrocław, place Maxa Borna 9, 50-204 Wrocław, Poland

�Received 22 March 2006; published 12 September 2006�

It has been suggested that Glauber �inflow� and Sznajd �outflow� zero-temperature dynamics for the one-
dimensional Ising ferromagnet with nearest-neighbor interactions are equivalent. Here we compare the two
dynamics from the analytical and computational points of view. We use the method of mapping an Ising spin
system onto the dimer RSA model and show that already this simple mapping allows us to see the differences
between inflow and outflow zero-temperature dynamics. Then we investigate both dynamics with synchronous,
partially synchronous, and random sequential updating using the Monte Carlo technique and compare both
dynamics in the number of persistent spins, clusters, mean relaxation time, and relaxation time distribution.

DOI: 10.1103/PhysRevE.74.031109 PACS number�s�: 05.50.�q

I. INTRODUCTION

The majority of natural phenomena observed in physics,
biology, geology, social sciences, etc., are nonequilibrium
processes. Unfortunately, the theory of nonequilibrium statis-
tical mechanics is far less developed than its equilibrium
counterpart. As a result, these ubiquitous phenomena are
poorly understood �1�. The zero-temperature dynamics of
simple models such as Ising ferromagnets provides interest-
ing examples of nonequilibrium dynamical systems with
many attractors �absorbing configurations, blocked configu-
rations, zero-temperature metastable states� �2�. In this paper
we focus on so-called single-spin-flip dynamics for the one-
dimensional Ising ferromagnet. The best-known example of
such dynamics for the Ising model is Glauber dynamics �3�.
It can be viewed as “inflow” dynamics, since the center spin
is influenced by its nearest neighbors �4�. Another type of
dynamics, which can be called “outflow” dynamics, since the
information flows from the center spin �or spins� to the
neighborhood, has been introduced to describe opinion for-
mation in social systems �5�. It has been suggested �6,7� that
both dynamics for an Ising ferromagnet with nearest-
neighbor interactions are equivalent, at least in one dimen-
sion. However, this seems to be true only in some particular
cases. The aim of this paper is to compare generalized out-
flow and inflow dynamics for a chain of Ising spins and show
in which cases these are equivalent and in which they differ.

It should be noticed here that the models studied in this
paper are closely related to the majority-rule �MR� model
introduced by Krapivsky and Redner �8�. In the MR model a
selected group of G spins adapts to the state of the local
majority and eventually the system reaches consensus �all
spins up or all spins down�. Interestingly, a system described
by the MR model and an Ising spin system with outflow
dynamics and random sequential updating �known as the
Sznajd model� behave similarly in some aspects. For in-
stance, the exit probability has almost the same, nontrivial
dependence on the initial magnetization �4,8�, in contrast to
the linear voter model �8,9,11�.

However, both inflow and outflow dynamics with random
sequential updating and the MR model belong to a very gen-
eral class of voter models �VMs�. Following Liggett �9,10�,
VM models are continuous-time Markov processes, which
are described by specifying the rates at which the system
changes from one configuration to another. Changes are gen-
erally local, in that only several sites change state at any
given time, and the rates for such transitions depend on the
configurations near those sites. The inflow dynamics has al-
ready been reformulated in terms of a linear voter model,
which is exactly soluble �9,13�. Probably the outflow dynam-
ics could be reformulated in terms of a nonlinear voter
model. Unfortunately, except for the linear voter model case
and some very special cases of nonlinear voter models, the
exact symmetry of voter models places them beyond the
reach of currently available techniques for rigorous math-
ematical analysis, but at least some Monte Carlo simulation
results are known �12�. Thus, it would be interesting to re-
formulate the outflow dynamics in terms of a nonlinear voter
model and check if this is one of the few fortunate solvable
cases or at least if there are some Monte Carlo results for
related voter models. Although this is an interesting and im-
portant task we leave it for future work and concentrate here
rather on comparisons of both dynamics under various up-
dating schemes.

In Secs. II and III we recall ideas of inflow and outflow
dynamics and formulate the generalized versions of both dy-
namics. We take both dynamics under a common roof, refor-
mulating them without using the concept of energy. In Sec.
IV we use the illuminating method of mapping the Ising spin
system onto the dimer RSA model and make simple mean-
field-like calculations to show the difference between the dy-
namics. In Sec. V we present Monte Carlo results for both
dynamics with several kinds of updating including synchro-
nous, partially synchronous, and random sequential updating.
The summary and conclusions are the subjects of Sec. VI of
the paper.

II. INFLOW DYNAMICS

The best-known example of such dynamics for the Ising
model is Glauber dynamics. Within Glauber dynamics, in a
broad sense, each spin is flipped Si���→−Si��+1� with a rate

*Electronic address: kweron@ift.uni.wroc.pl; URL: http://
www.ift.uni.wroc.pl/ kweron
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W��E� per unit time and this rate is assumed to depend only
on the energy difference implied in the flip �2�. The two most
usual choices of flipping rates in the case of discrete updates
are the heat-bath and Metropolis algorithms; both obey the
detailed balance condition

W��E�
W�− �E�

= exp�− ��E� . �1�

Recently it was shown �2� that there is a vast family of
dynamical rates, besides these two choices, which obeys the
condition �1�. Among them the class of zero-temperature dy-
namics defined as

W��E� = �1 if �E � 0,

W0 if �E = 0,

0 if �E � 0,

�2�

is very interesting. The zero-temperature limits of the heat-
bath and Metropolis rates are, respectively, W0

HB=1/2 and
W0

M =1. For any nonzero value of the rate W0 corresponding
to free spins, the dynamics belongs to the universality class
of the zero-temperature Glauber model. This is a prototypical
example of phase ordering by domain growth �coarsening�.
The typical size of ordered domains of consecutive ↑ and ↓
spins grows as L�t�� t1/2. The particular value W0=0 corre-
sponds to the constrained zero-temperature Glauber dynam-

ics ��2� and references therein�. In the constrained zero-
temperature Glauber dynamics, the only possible moves are
flips of isolated spins and the system therefore eventually
reaches a blocked configuration, where there is no isolated
spin �2�. Very interesting results for the zero-temperature
Glauber dynamics have also been obtained using computer
simulations �14–17�.

In out-of-equilibrium systems, there is usually no energy
function and the system is only defined by its dynamical
rules �18�. This is also the case of the sociophysics Sznajd
model. For this reason we reformulate the definition of the
zero-temperature Glauber dynamics for the Ising ferromag-
net without using the concept of energy in the following
way:

Si�� + 1� =�1 if �
NN

SNN � 0,

− Si��� with probability W0
if �

NN

SNN = 0,

− 1 if �
NN

SNN � 0,

�3�

where �NNSNN denotes the sum over nearest neighbors.
In one dimension, which is the case of this paper, the

above definition can be obviously written as

Si�� + 1� = �1 if S���i−1 + S���i+1 � 0,

− Si��� with probability W0 if S���i−1 + S���i+1 = 0,

− 1 if S���i−1 + S���i+1 � 0.

�4�

III. OUTFLOW DYNAMICS

Outflow dynamics was introduced to describe opinion
change in a society. The idea is based on the fundamental
social phenomenon called “social validation.” However, in
this paper we do not focus on social applications of the
model �for interested readers, reviews can be found in
�19–22��. On the contrary, here we investigate the dynamics
from the theoretical point of view.

In the original model a pair of neighboring spins Si and
Si+1 was chosen and if SiSi+1=1 the two neighbors of the pair
followed its direction, i.e., Si−1→Si �=Si+1� and Si+2→Si

�=Si+1�. Such a rule was also used in all later papers dealing
with the one-dimensional case of the model. However, the
case in which SiSi+1=−1 was noted as far less obvious. For
example, in the original paper in the case of SiSi+1=−1,
Si−1→Si+1 and Si+2→Si. However, it was noticed in several
papers that such a rule is unrealistic in a model trying to
represent the behavior of a community. Moreover, it can be
seen from the following two rules that the original Sznajd
model with both ferromagnetic and antiferomagnetic rules is

equivalent to the single simple rule that every spin takes the
direction of its next-nearest neighbor independently of the
product SiSi+1.

Ferromagnetic rule. If Si���Si+1���=1 then Si−1��+1�
→Si��� and Si+2��+1�→Si+1��� is equivalent to the rule: that
if Si���Si+1���=1 then Si−1��+1�→Si+1��� if Si+2��+1�
→Si���.

Antiferromagnetic rule. If Si���Si+1���=−1 then Si−1��
+1�→Si+1��� and Si+2��+1�→Si���.

Thus, the two rules above can be rewritten as a simple
single rule: Si−1��+1�→Si+1��� and Si+2��+1�→Si���.

In later papers we proposed two modifications of the
model in which the antiferromagnetic rule was replaced by
one of rules described below.

Modification 1. If Si���Si+1���=−1, then Si−1��+1�
→Si−1��� and Si+2��+1�→Si+2���.

Modification 2. If Si���Si+1���=−1, then Si−1��+1�→
−Si−1��� and Si+2��+1�→−Si+2��� with probability 1/2.

The generalized dynamics including the two modifica-
tions above, can be written as
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Si�� + 1� = �1 if Si+1��� + Si+2��� � 0,

− Si��� with probability W0 if Si+1��� + Si+2��� = 0,

− 1 if Si+1��� + Si+2��� � 0.

�5�

It is easy to see that modification 1 corresponds to W0
1

=0 and modification 2 to W0
2=1/2.

IV. MAPPING ONTO THE DIMER MODEL

As was mentioned in previous sections, for W0=0 the
system under inflow �Glauber� dynamics described by the
formula �4� eventually reaches a blocked configuration,
where there is no isolated spin. On the other hand the system
under outflow dynamics described by �5� always reaches a
ferromagnetic steady state. Thus, for W0=0 the difference
between outflow and inflow dynamics is obvious. Neverthe-
less, within the mean-field approach �23� and Galam’s uni-
fying frame �6� both dynamics are equivalent, i.e., there is no
difference between outflow and inflow dynamics, even for
W0=0.

Here we use the illuminating method of mapping the Ising
spin system onto the dimer RSA model, which has already
been done for the inflow dynamics �2�:

Xi = SiSi+1 = 1 Þ � ,

Xi = SiSi+1 = − 1 Þ • . �6�

In the case of inflow dynamics the following transitions,
which change the state of the system, are possible:

spins particles

↓↑ ↓ → ↓ ↓↓ • • → � �

↑↓ ↑ → ↑ ↑↑ • • → � �

↓↑ ↑→
W0

↓ ↓↑ • �→
W0

� •

↑↓ ↓→
W0

↑ ↑↓ • �→
W0

� •

↓↓ ↑→
W0

↓ ↑↑ � •→
W0

• �

↑↑ ↓→
W0

↑ ↓↓ � •→
W0

• �

Thus, after mapping there are only two types of transitions

for inflow dynamics: • • → � � and � •↔
W0

• �. This mapping
shows at once that for W0=0 the dynamics is fully irrevers-
ible, in the sense that each spin flips at most once during the
whole history of the sample.

It should be noticed that if we map the system under
outflow dynamics onto the dimer model we have to take into
account four particles, because changing the border spin in-
fluences the next particle. In this case four types of transi-

tions are possible: � • � → � � • , � • • → � � �, • � •↔
W0

• • �, and

•• •↔
W0

• � � �to make it more clear the flipped spins are de-
noted by double arrows in the table below�:

spins particles

↓↓ Ý ↑ → ↓ ↓ ß↑ � • � → � � •

↑↑ ß ↓ → ↑ ↑ Ý↓ � • � → � � •

↓↓ Ý ↓ → ↓ ↓ ß↓ � • • → � � �

↑↑ ß ↑ → ↑ ↑ Ý↑ � • • → � � �

↓↑ Ý ↓→
W0

↓ ↑ ß↓ • � •→
W0

• • �

↑↓ ß ↑→
W0

↑ ↓ Ý↑ • � •→
W0

• • �

↑↓ Ý ↓→
W0

↑ ↓ ß↓ • • •→
W0

• � �

↓↑ ß ↑→
W0

↓ ↑ Ý↑ • • •→
W0

• � �

↓↑ ß ↓→
W0

↓ ↑ Ý↓ • • �→
W0

• � •

↑↓ Ý ↑→
W0

↑ ↓ ß↑ • • �→
W0

• � •

↑↓ ß ↓→
W0

↑ ↓ Ý↓ • � �→
W0

• • •

↓↑ Ý ↑→
W0

↓ ↑ ß↑ • � �→
W0

• • •

This mapping shows that for W0=0 the outflow dynamics
consists of two processes—diffusion of • particles in the sea
of � and annihilation of •• pairs. Thus our model for W0 with
random sequential updating reduces to the analytically solv-
able reaction-diffusion system A+A→0 �denoting the empty
place by � and the A particle by •�.

For W0�0 we can also easily use the mean-field approach
�MFA�. Mean-field results for the outflow dynamics without
dimer mapping can be found in �23�. Within dimer mapping
we take into account correlations between pairs of nearest
neighbors. Thus if we apply the MFA to the mapped system
we expect more correct results than are obtained within the
MFA without mapping.

Let us denote the number of • particles by Nb and
Nb

N =b.
In our case, in one time step �, only two events are

possible—the number of • particles decreases by 2/N with
probability ��b� or remains constant.

For the inflow dynamics

�in�b� = b2 �7�

and for the outflow dynamics

�out�b� = �1 − b�b2 + W0b3 = b2�1 − b�1 − W0�� . �8�

It is seen that the above results are not precise, since there
is no dependence between �in�b� and W0 for the inflow dy-
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namics and the only stable steady state in this case is b=0,
i.e., the ferromagnetic state, which is true as long as W0�0.
However, as has been noticed this result is not correct for
W0=0. The same results can be obtained using the mean-
field approach without mapping.

However, for the outflow dynamics the MFA with dimer
mapping gives better results than the basic MFA presented in
�23�. This is understandable, because in this case pairs of
neighboring spins cause the changes in the system.

For W0=0 there are two steady states, b=0, i.e., the fer-
romagnetic state, and b=1, i.e., the antiferromagnetic state.
For b�0 and b�1 �out�b��0 which implies that b=0 is an
unstable steady state, while b=1 is a stable steady state. This
result is in agreement with computer simulations �5�. For
W0=1 there is only one ferromagnetic steady state, which is
also confirmed by the computer simulations �4�.

As we see the differences between outflow and inflow
dynamics are already seen if we apply the mean-field ap-
proach with mapping of the pairs of spins into single par-
ticles. In the next section we present simulation results which
show more differences between these two dynamics.

V. SIMULATION RESULTS

The spin updating within both dynamics can be sequential
or parallel. Within the parallel �or in other words synchro-
nous� updating the system state at time step t+1 is given by
its state at time step t. At every time step t we go systemi-
cally through the whole lattice and change spins according to
the appropriate rule. In the random sequential �or in other
words asynchronous� updating in each time step only one
spin is selected at random and it adapts to its neighborhood.
One Monte Carlo step �MCS� in this case consists of N time
steps, while in the case of parallel updating one MCS is
equivalent to a single time step.

In this paper we compare both dynamics for random se-
quential updating, parallel updating, and partially parallel up-
dating. From now on we call the last case c-parallel updat-
ing. Within this updating the randomly chosen fraction c of
spins is updated synchronously. Of course c=1 corresponds
to parallel updating and c=0 to random sequential updating.

A. The number of persistent spins

One of the main quantities of interest in the nonequilib-
rium dynamics of spin systems at zero temperature is the
fraction of spins P�t� that persist in the same state up to some
later time t=N� �i.e., measured in Monte Carlo steps�
�24,25�. In this paper we measure the fraction of persistent
spins for both outflow and inflow dynamics with c-parallel
updating for different values of c. The initial configuration
consists of a randomly distributed fraction p+�0� of up spins.
The number of persistent spins for the outflow dynamics
with W0=0 and random sequential updating has already been
investigated by Stauffer and Oliveira �26� and found to agree
with results for the inflow dynamics, i.e., decays with time t
as 1/ t−3/8. However, it was found that in higher dimensions
the exponents for inflow and outflow dynamics are different
�26�. Here we investigate the case of the Ising spin chain

more carefully, i.e., for different values of W0 and c.
The first difference between inflow and outflow dynamics

is already seen for random sequential updating, i.e., c=0. For
both dynamics the number of persistent spins decays initially
as a power law �t−	. However, for inflow dynamics the ex-
ponent is independent of W0 until W0�0, while for outflow
dynamics the exponent is W0 dependent, 	=	�c� �see Fig. 1�.
Moreover, for inflow dynamics the power law describes
properly the decay of the number of persistent spins for the
whole range of time, while within the outflow dynamics it is
valid only for t smaller than a certain value of time t*�W0�
dependent on the flipping probability W0. For W0→0 we
obtain t*�W0�→
 and the evolution of the number of persis-
tent spins is the same for outflow and inflow dynamics in
agreement with the results obtained by Stauffer and Oliveira
�26�.

More differences are seen for partially synchronous up-
dating with c�0. At each elementary time step � the fraction
c of spins is chosen randomly and the chosen group is
changed synchronously. In such a case we have noticed that
the number of persistent spins still decays as a power law for
the inflow dynamics. However, for the outflow dynamics the
power law is no longer valid. The number of persistent spins
decays very fast in this case �see Fig. 2�.

We may conclude this subsection in the following – the
number of persistent spins is c sensible only for the outflow
dynamics. For W0�0 and any value of c the number of
persistent spins in the inflow dynamics is described by the
power law with nearly the same exponent.

B. The number of clusters

Probably the most natural way to investigate the relax-
ation process of the consensus dynamics is to look at the
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FIG. 1. The change in time of the number of persistent spins on
the chain N=300 for random sequential updating �i.e., c=0� for the
inflow dynamics �upper panel� and outflow dynamics �lower panel�.
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number of clusters �or number of domain walls between
neighboring opposite spins� over time. A cluster consists of a
group of spins, each of which is a nearest neighbor to at least
one other spin in the cluster, with all spins having the same
orientation. With such a definition consensus is reached
when only one cluster is present in the system or when there
is no domain wall. Because of the similarity of both dynam-
ics �inflow and outflow� with random sequential updating to
the VM, we expected, and have verified numerically, that the
density of domain walls �as well as the number of clusters�
decays as t−1/2, analogously with the results for the MR
model �8�.

Moreover, for both inflow and outflow dynamics with
c-parallel updating the number of clusters �and the number of
domain walls� monotonically decays as t−1/2 for any value of
c. This result shows that the variation of the number of clus-
ters in time, although is a very intuitive and natural measure
of the relaxation, is not a good quantity for dynamics com-
parison.

C. The mean relaxation time

The differences between the dynamics can be observed
clearly if we look at the mean relaxation time as a function of
the initial fraction of randomly distributed up spins p+�0�.
Within 0-parallel updating �i.e., random sequential updating�
the relaxation is much slower for the inflow dynamics than
for the outflow dynamics. This is also true for the c-parallel
updating with small c. On the contrary, within 1-parallel up-
dating �i.e., synchronous updating� the relaxation under out-
flow dynamics is slower than under inflow �see Fig. 3�.

In general, the relaxation time decays with W0 growth, but
the dependence between the mean relaxation time and W0 is
different for outflow and inflow dynamics. Two examples for
c=0.2 and 0.5 for several values of W0 are shown in Figs. 4
and 5, respectively. It can be noted that, for example, for c
=0.5 and W0=0.8 the dependence between the mean relax-
ation time and the initial concentration of up spins p+�0� is
nearly the same.

In Fig. 6 we have presented the dependence between the
mean relaxation times from a random initial state consisting
of 50% randomly distributed up spins �maximal waiting
time� and the flipping probability W0 for the inflow and out-
flow dynamics. It is seen that the dependence on c is much
stronger for the outflow dynamics. For the inflow dynamics
the mean relaxation time is almost the same for all values of
c. On the other hand for a given value of c the dependence
between ��	 and W0 is stronger for the inflow dynamics.

D. The distribution of waiting times

In the paper �23� the mean-field approach for the outflow
dynamics with W0=0 was presented and the distribution of
waiting times needed to reach the stationary state was found.
Recall that for � initial conditions the distribution of waiting
times has an exponential tail �23�:

Pst
���� 


6

4
�1 − m0

2�e−2�, � → 
 . �9�

Monte Carlo simulations confirm this prediction both on the
complete graph and on the chain. In this paper we have
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FIG. 2. The change in time of the number of persistent spins on
the chain N=300 for partially synchronous updating for W0=1/2.
Upper panel presents results for c=0 and lower for c=0.2. It is seen
that for c�0 �bottom case� the number of persistent spins decays
very fast and cannot be described by a power law.
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FIG. 3. The mean relaxation times from a random initial state
consisting of p+�0� randomly distributed up spins for W0=0.2. Up-
per panel corresponds to synchronous updating c=1, and bottom
panel to c=0.2. It is seen that the relaxation under outflow dynam-
ics is slower then under inflow for synchronous updating. On the
contrary, the relaxation is much slower under the inflow dynamics
than under the outflow dynamics for small c.
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checked also the distribution of waiting times for different
values of W0 and c for both outflow and inflow dynamics.
The distribution of waiting times has an exponential tail for
any value of W0 and c, although the exponent depends on
these parameters. The example for c=0, showing comparison
between inflow and outflow dynamics, is shown in Fig. 7.

VI. CONCLUSIONS

It has been suggested �6,7� that zero-temperature outflow
and inflow dynamics for an Ising ferromagnet with nearest-
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FIG. 4. The mean relaxation times from the random initial state
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neighbor interactions are equivalent in one dimension. How-
ever, it is certainly not true for W0=0. This particular value
corresponds to the constrained zero-temperature Glauber dy-
namics where the only possible moves are flips of isolated
spins and the system therefore eventually reaches a blocked
configuration, where there is no isolated spin �2�. This can be
also easily shown using the method of mapping the Ising
spin system onto the RSA dimer model. On the other hand,
the outflow dynamics leads to a ferromagnetic steady state
for any value of W0. This observation motivated us to com-
pare both dynamics more carefully. We have made Monte
Carlo simulations for both dynamics using random sequen-
tial updating, parallel updating, and c-parallel updating �a
randomly chosen fraction c of spins is updated synchro-
nously�. We have measured, for different values of W0 and c,
the distribution of waiting times, the mean waiting time, the
decay of the number of clusters, and the number of persistent
spins in time.

A qualitative difference between inflow and outflow dy-
namics is not visible either in the number of clusters in time
or in the distribution of waiting times. However, it should be
noticed that the relaxation time is different for the two both
dynamics. Nevertheless, for both dynamics the distribution
of waiting times has an exponential tail and the number of
clusters decays as t−1/2 for any value of W0�0 and c.

Differences between the dynamics appear if we look at
the dependence between the mean relaxation time and the
initial concentration of randomly distributed up spins for dif-
ferent values of W0 and c. For c=0, which corresponds to
random sequential updating, the mean relaxation time is
shorter for the outflow dynamics �e.g., for W0=0.2 and p0
=0.5 it is about ten times shorter� than for inflow. The mean
relaxation time ��	 decreases with W0 growth for both dy-
namics, but the dependence between ��	 and W0 is different
for outflow and inflow dynamics. Generally the mean relax-
ation time decays faster with growing W0 for the inflow dy-
namics for any value of c. Moreover, with growing c the
dependence between the mean relaxation time for the inflow

dynamics and the outflow dynamics vanishes. As a result, for
some values of c and W0 �e.g., c=0.5 and W0=0.8� the de-
pendence between the mean relaxation times and the initial
concentration of up spins is identical. Of course this suggests
that for some values of parameters W0 and c the relaxation
under outflow dynamics is faster than under inflow dynam-
ics. This is indeed true. In the case of c=1 �parallel updat-
ing�, the relaxation is faster under the inflow dynamics for
any value of W0.

The second quantity that behaves differently for the two
dynamics is the number of persistent spins in time. Mainly
differences are seen for partially synchronous updating with
c�0. In such a case we have noticed that the number of
persistent spins decays as a power law for the inflow dynam-
ics �as in the case of c=0�. However, for the outflow dynam-
ics the power law is no longer valid. The number of persis-
tent spins decays very fast in this case.

Concluding, the inflow and outflow dynamics differ very
clearly even in one dimension. There is an obvious, very
strong difference for W0=0, but also for W0�0 the two dy-
namics are qualitatively different. In the case of random se-
quential updating the relaxation under outflow dynamics is
much faster than under inflow dynamics. On the contrary in
the case of parallel updating the outflow dynamics is much
slower than the inflow.

In closing this paper we should mention that the outflow
dynamics with W0=0 with synchronous updating was inves-
tigated earlier and it was found that in such a case the pos-
sibility of reaching a consensus is reduced quite dramatically
�27�. Also the number of persistent spins varies with c only
for the outflow dynamics. For W0�0 and any value of c the
number of persistent spins in the inflow dynamics is de-
scribed by a power law with nearly the same exponent.

Generally the outflow dynamics is much more influenced
by the type of updating than the inflow dynamics. We believe
that this result especially is very important in the various
interdisciplinary applications of the zero-temperature single-
spin-flip dynamics.
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Abstract – In this paper we introduce a modified version of the one-dimensional outflow dynamics
in the spirit of the Sznajd model, which simplifies the analytical treatment. The equivalence
between original and modified versions is demonstrated in simulations. Using the Kirkwood
approximation, we obtain an analytical formula for the exit probability and we show that it
agrees very well with computer simulations in the case of random initial conditions. Moreover, we
compare our results with earlier analytical calculations obtained from the renormalization group
method and from the general sequential probabilistic frame introduced by Galam and show that
our result is superior to the others. Using computer simulations we investigate the time evolution
of several correlation functions in order to check the validity of the Kirkwood approximation.
Surprisingly, it turns out that the Kirkwood approximation gives correct results even for such
initial conditions for which it cannot be easily justified.

Copyright c© EPLA, 2008

Introduction. – Opinion-dynamics models are among
the most studied topics in the field of sociophysics [1].
The two-state, or “Ising-like” models have been used since
the very beginning [2]. The interest in opinion dynamics
was triggered by the works of Galam [3,4] and a large
amount of works was produced, including the study of the
voter [5,6], Sznajd [7] and majority rule [3,4,8] models.
These models have two features in common. First, the
complexity of real-world opinions is reduced to the mini-
mum set of two options, σ=+1 or −1. Second, the indi-
viduals bearing these opinions are immobile; they are
attached to the sites of a lattice, which may be linear chain,
hypercubic lattice, random graph or any of other possi-
bilities. The basic questions asked when studying these
models are: what is the probability to reach consensus in
opinions, say, all individuals having σ=+1? and what is
the time necessary to reach such consensus?
More specifically, the Sznajd model can be charac-

terised by the outflow dynamics. Contrary to the kinetic
Ising model, the information does not spread from the
neighbourhood of a chosen site towards that site but,
conversely, from a cluster of sites to the neighbourhood
of that cluster. In one dimension, the dynamics is defined

(a)E-mail: kweron@ift.uni.wroc.pl

as follows. If a pair of neighbours at sites x, x+1 agree
in opinion, σ(x) = σ(x+1), the two neighbours of the
pair adopt the same opinion, i.e. σ(x− 1)→ σ(x) and
σ(x+2)→ σ(x). Otherwise the two neighbouring states
are unchanged. In higher dimensions and on other lattices
the rule is defined analogously.
By now, quite a few results have been accumulated (an

interested reader may resort to reviews [1,9–12]). In this
letter, we shall address the question: what is the prob-
ability P+ that all of the individuals eventually reach
consensus in state, say, +, provided that at the begin-
ning the fraction of + opinions was p? This quantity is
commonly called exit probability [13,14]. From the simula-
tions [15], as well as from the exact solution on a complete
graph [16] and a renormalisation-group calculation [17] it
is known that it is a step function with discontinuity at
p= 0.5, unless the lattice is a one-dimensional chain. In
this case it is a continuous function [18]. Therefore, the
one-dimensional case is singular and poses a problem of
fundamental interest.
Several analytical approaches have been proposed.

We have already mentioned the mean-field solution [16],
which, however, is inapplicable in 1D. Later, Galam in [19]
presented a general sequential probabilistic frame (GSPF),
which extended a series of earlier opinion dynamics
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Fig. 1: Exit probability P+ from the random initial state
consisting of the fraction p of up-spins for the modified original
outflow dynamics in one dimension for several lattice sizes L.
It may be seen that results agree very well with the analytical
formula given by eq. (22) obtained from the Kirkwood
approximation (solid line). The renormalization group (RG)
results obtained in [17] for growing networks and calculations
made by Galam within his general sequential probabilistic
frame (GSPF) given by eq. (1) agree with simulation results
much worse. However, it should be noticed that a one-step
update yields much more reasonable results than the final step
function obtained by successive iterations of eq. (1). Results
obtained for a modified version of the outflow dynamics in
which only one neighbour of the central pair is changed are
exactly the same. Results are averaged over 104 samples.

models. Within his frame, he was able to find analytic
formulae for the probability p(t+1) that a randomly
chosen agent shares opinion + at time t+1 in terms
of the same probability p(t) at time t. Among several
models, he considered also the same one-dimensional rule
as we are about to study here and within the GSPF he
found the following dynamical rule [19]:

p(t+1) = p(t)4+
7

2
p(t)3[1− p(t)]

+3p(t)2[1− p(t)]2+ 1
2
p(t)[1− p(t)]3. (1)

Iterating this formula until the absorbing state is reached,
one can find that the exit probability P+ is a step function
(see fig. 1).
In the paper [17] the real-space renormalization-group

approach has been proposed to calculate the probability
P+(p) for the outflow dynamics on a network. In the case
of a growing network, either hierarchical or of Barabási-
Albert type, the resulting formula was P+ = 3p

2− 2p3,
while in the case of a fixed network they have found that
P+ is a step function, just the same as for the complete
graph [16].
In fig. 1 we can compare the exit probability obtained

in our simulations of the 1D outflow dynamics with the
results of Galam’s GSPF and RG calculation of ref. [17]
for growing networks. None of them are satisfactory. Note

also that if we limited the process of Galam’s GSPF
to one iteration only, the agreement would be at least
qualitatively correct.
So, we can see that currently there is no analytic

argument which would satisfactorily explain the behaviour
of the outflow dynamics in the Sznajd model in one
dimension. Our intention is to fill this gap. In the rest of
this paper we present analytical results obtained using the
Kirkwood approximation following the method developed
in [13] for the majority rule model. Anticipating the
conclusions, we can see in fig. 1 that the agreement with
simulations is very good.

Approximate solution in 1D. – We consider indi-
viduals having opinions represented as spins ±1 occu-
pying sites on a linear chain of length L. We use the
following notation: σ ∈ {−1,+1}L denotes the state of
the system and σ(y) the state of the individual at site y
if the system is in state σ. We also denote by σx the state
which differs from σ by flipping the spin at site x. There-
fore, σx(y) = (1− 2δxy)σ(y).
We introduce here a slight modification of the original

outflow rule: we choose a pair of neighbours and if they
both are in the same state, then we adjust one (instead
of two) of its neighbours (chosen randomly with equal
probability 1/2) to the common state. At most one spin
is flipped in one step, while in the original formulation
two can be flipped simultaneously. Therefore, the time
must be rescaled by factor 12 . We measure the time so
that the speed of all processes remains constant when
L→∞, and thus normally one update takes time 1

L
.

Here, instead, we consider also the factor 12 , so a single
update takes time ∆t= 1

2L . Our modification eliminates
some correlations due to simultaneous flip of opinions
at distance 3. However, if we look at later stages of the
evolution, where typically the domains are larger than 2,
simultaneous flips occur very rarely. Therefore, we do
not expect any substantial difference. Indeed, computer
simulations confirm our expectations —only time has to
be rescaled (see fig. 2).
On the other hand, the modification simplifies the

analytical treatment. Indeed, the update rule can be
equivalently formulated as follows: Choose randomly a
spin x and side s (s= 1 for right, s=−1 for left). The
updated state is σ(x; t+∆t) = σ(x+ s; t) if σ(x+ s; t) =
σ(x+2s; t), otherwise σ(x; t+∆t) = σ(x; t).
Within such a formulation the probability of the flip

σ→ σx in one update is

W (σ→ σx) =
1

8L
[σ(x+2)σ(x+1)+σ(x− 1)σ(x− 2)

−σ(x)(σ(x+2)+σ(x+1)+σ(x− 1)
+σ(x− 2))+ 2]. (2)

These flip probabilities are then inserted into the master
equation:

P (σ; t+∆t) =
∑
σ′
W (σ′→ σ)P (σ′; t), (3)

fully describing the evolution of the system.

18006-p2



Some new results on one-dimensional outflow dynamics

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

p

<
τ>

/L
2

1nn L=102

2nn L=102

1nn L=4 × 102

2nn L=4 × 102

2nn L=103

Fig. 2: The mean relaxation times from the random initial state
consisting of p up-spins for the modified (1 nn) and original
(2 nn) outflow dynamics in one dimension for several lattice
sizes L. In the modified version at most one spin is flipped
in one elementary step, while in original formulation two can
be flipped simultaneously. Therefore, in the case of a modified
version the time was rescaled by a factor 1

2
. It should be noticed

that in computer simulations time is measured in Monte Carlo
steps (MCS). As usual, one MCS consists of L elementary
updating, i.e. in one MCS L times the pair of spins is random-
ly and independently selected with probability 1/L, i.e. it may
happen that one pair will be chosen several times in one MCS.
Since we investigate the relaxation process we simulate the
system as long as it reaches the final state with all spins up
or down. The average number of MCSs needed to reach the
final state depends on the initial concentration of up-spins and
is proportional to L2 analogously to the voter model [5,6,20].
The results presented here are averaged over 104 samples.

Now, we make the limit L→∞, which also implies the
continuous time limit, as ∆t→ 0. We also note that most
of the transition probabilities W (σ′→ σ) are zero, since
only one spin flip is allowed in one step. Finally we end
with

d

dt
P (σ; t) =

∑
x

[
w(σx→ σ)P (σx; t)−w(σ→ σx)P (σ; t)

]
,

(4)

where the transition rates are trivially related to transition
probabilities (2) by a proportionality factor

w(σx→ σ) = 2NW (σx→ σ) . (5)

(The sum is now over an infinite set of sites.)
It is hopeless to solve the master equation as it is.

Instead, we write evolution equations for some correlation
functions derived from it. We define:

C0(t) = 〈σ(y)〉 ≡
∑
σ

σ(y)P (σ; t),

C1(n; t) = 〈σ(y)σ(y+n)〉,
C2(n,m; t) = 〈σ(y−n)σ(y)σ(y+m)〉,

C3(n,m, l; t) = 〈σ(y−n)σ(y)σ(y+m)σ(y+m+ l)〉,
... (6)

Only two equations are relevant for us. The first is

d

dt
C0(t) =−C2(1, 1; t)+C0(t) (7)

and the second

d

dt
C1(1; t) =−C3(1, 1, 1; t)−C1(1; t)+C1(3; t)+ 1. (8)

These two become a closed set of equations, if we apply the
approximations described in the next section. Before going
to it, it is perhaps instructive to show the intermediate
results which lead to equations (7), (8), and analogically
to others, for more complicated correlation functions.
Thus, for example, for the lowest correlation function

—the average of one spin— we have

d

dt
〈σ(y)〉=−2〈w(σ→ σy)σ(y)〉 (9)

and for the next one in the level of complexity

d

dt
〈σ(y)σ(y+1)〉 =−2〈w(σ→ σy)σ(y)σ(y+1)〉

−2〈w(σ→ σy+1)σ(y)σ(y+1)〉. (10)
The pattern is transparent. When computing the corre-
lation function of spins at sites x1, x2, x3, . . . , on the
RHS we have the sum of terms, in which we average the
product of spins at sites x1, x2, x3, . . . with transition
rate, which is derived from the spin configuration accord-
ing to (2) and (5) for flip at positions x1, x2, x3, . . . . As
a formula, this sentence means

d

dt

〈∏
i

σ(xi)

〉
=−2

∑
j

〈
w(σ→ σxj )

∏
i

σ(xi)

〉
. (11)

Kirkwood approximation. Now we shall discuss the
approximations used for solving eqs. (7) and (8).
The first one is the usual Kirkwood approximation,

or decoupling, which is used in various contexts and
accordingly it assumes different names. For example in
the classical quantum many-body theory of electrons and
phonons in solids, it is nothing else than the Hartree-Fock
approximation (but contrary to this theory, which may be
improved systematically using diagrammatic techniques,
here the systematic expansions are not developed). We
use the name Kirkwood approximation, following the
work [13].
In our case, the Kirkwood approximation amounts to

C3(1, 1, 1; t)�
(
C1(1; t)

)2
(12)

in eq. (8) and

C2(1, 1; t)�C1(1; t)C0(t) (13)

in eq. (7). While the latter assumption (13) enables us
to relate equation (7) directly to (8) and therefore to
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Fig. 3: Sample time evolution of several correlation functions
given by eq. (6) for random initial conditions with fraction p
of up-spins. The Kirkwood approximation given eqs. (12), (13)
and assumption (14) are valid for later stages, although the
assumption (12) agrees very well with simulation results from
the very beginning (left upper panel). The data come from one
single run (not averaged).

solve it as soon as we have the solution of (8), the
approximation (12) does not make of (8) a closed equation
yet. The point is that there is also the function C1(3; t)
measuring the correlation at distance 3. So, we make also
an additional approximation, which is also made in [13].
We suppose that C1(n; t) only weakly depends on the
distance n, or else, that the decay of the correlations is
relatively slow. If the spins are correlated to a certain
extent on distance 1 (the neighbours), they are correlated
to essentially the same extent also on distance 3 (next-
next neighbours). This is also justified if the domains are
large enough, i.e. at later stages of the evolution. So, we
assume

C1(3; t)�C1(1; t) . (14)

In fig. 3 we present a sample (not averaged) time evolu-
tion of several correlation functions. The first assump-
tion (12) agrees very well with simulation results from
the very beginning and the second condition (13) agrees
with simulations also quite well. On the other hand,
the assumption (14) that the decay of the correlations
is relatively slow is valid only at later stages of the
evolution.
To sum it up, the approximations (12), (13), and (14)

say that approximately

C0(t) � ψ(t),

C1(n; t) � φ(t),
(15)

where ψ(t) and φ(t) satisfy the equations (the dot denotes
the time derivative)

ψ̇ = (1−φ)ψ,
φ̇ = 1−φ2 .

(16)

The solution is straightforward. We assume initial condi-
tions φ(0) =m1 and ψ(0) =m0. First we solve the second
equation from the set (16). This gives

φ(t) =
sinh t+m1 cosh t

cosh t+m1 sinh t
(17)

and inserting that into the first of the set (16) we have

ψ(t) =
2m0

1+m1+(1−m1) e−2t . (18)

The most important result is the asymptotics

ψ(∞) = 2m0
1+m1

. (19)

How to interpret this finding? The average C0(t) is the
average magnetisation. In other terms, it determines the
probability that a randomly chosen spin will have state +1
at time t. This probability is p+(t) = (C0(t)+ 1)/2. There-
fore, m0 =C0(0) is the initial magnetisation. When we go
to the limit t→∞, we know that ultimately the homo-
geneous state is reached. The asymptotic magnetisation
C0(∞) therefore says what the probability that the final
state will have all spins +1 is. It is (C0(∞)+ 1)/2. So, (19)
means that

C0(∞)� 2C0(0)

1+C1(1; 0)
. (20)

If the initial state is completely uncorrelated, i.e. we set
the spins at random, with the only condition that the
average magnetisation is m0, we have C1(1; 0) =m

2
0 and

C0(∞)� 2m0
1+m20

. (21)

Finally, we express this result in terms of the probability
p= (C0(0)+ 1)/2 to have a randomly chosen spin in state
+1 at the beginning and the probability P+ = (C0(∞)+
1)/2 that all spins are in state +1 at the end. We have

P+ � p2

2p2− 2p+1 . (22)

Computer simulations for random initial conditions, in
which assumption C1(1; 0) =m

2
0 can be done, show very

good agreement with analytical formula (22). In the next
section we show how the results will change if we allow
correlations in the initial conditions.

Correlated initial conditions. – Here we consider
two examples of correlated initial conditions with the
fraction p of up-spins:

1) Ordered initial state that consists of two clusters: pL-
length of up-spins and (1− p)L-length of down-spins,
for example in case of L= 10:

p= 0.5 : ↑↑↑↑↑↓↓↓↓↓
p= 0.4 : ↑↑↑↑↓↓↓↓↓↓ (23)

p= 0.3 : ↑↑↑↓↓↓↓↓↓↓
. . . .
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Fig. 4: Exit probability P+ from the ordered initial state
consisting of the fraction p of up-spins for the outflow dynamics
in one dimension for several lattice sizes L. The initial state
consists of two clusters: pL-length of up-spins and (1− p)L-
length of down-spins. The results for original and modified
rules are the same. The dependence between the initial ratio of
up-spins p and the exit probability is given by the simplest
linear function P+ = p as in the case of the voter model. An
analytical result in this case can be obtained from eq. (26).
Results are averaged over 103 samples.

2) Correlated, completely homogeneous, initial state.
For such p that 1/p is an integer, we set σ(n/p)=1
for n= 0, 1, 2, 3, . . . and σ(x) =−1 otherwise. For
example, in the case of L= 8:

p= 0.5 : ↑↓↑↓↑↓↑↓
p= 0.25 : ↓↓↓↑↓↓↓↑

(24)

. . . .

In both cases it is easy to calculate exactly the corre-
lation function C1(1; 0). In the first case of ordered initial
conditions we obtain

C1(1; 0) = 1− 1
L
≈ 1. (25)

Thus, from eq. (20):

C0(∞)� 2C0(0)

1+C1(1; 0)
=
2m0
1+1

=m0⇒ P+ = p. (26)

Computer simulations show that indeed for such initial
conditions P+ = p (see fig. 4).
As we can see, the Kirkwood approximation gives,

surprisingly, correct results also in this case. At the same
time, fig. 5 shows that eqs. (12) and (13) defining the
Kirkwood approximation are not justified by computer
simulations.
We have checked also the mean relaxation time in case of

ordered initial conditions (fig. 6). It occurs that like for the
random initial conditions the mean relaxation time scales
with the system size as 〈τ〉 ∼L2 (see figs. 2 and 6). The
same scaling has been found in the voter model [5,6,20].
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Fig. 5: Sample time evolution of several correlation functions
given by eq. (6) for random ordered initial conditions with
fraction p of up-spins. The initial state consists of two clusters:
pL-length of up-spins and (1− p)L-length of down-spins. The
Kirkwood approximation given eqs. (12) and (13) are not valid.
The data come from one single run (not averaged).
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in one dimension for several lattice sizes L. The initial state
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ordered initial state the dependence between the initial ratio
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simple parabola rather than by a bell-shaped curve. The data
presented in the figure are averaged over 104 samples.

However, contrary to the random initial conditions for
which a bell-shaped curve is observed, here the mean
relaxation times is well described by simple parabola:

〈τ〉
L2
=
1

2
p(1− p). (27)

It is quite easy to understand this result. In fact,
in the initial condition there is only one domain wall,
where +1 and −1 sites come into contact. During the
evolution this domain wall performs a random walk and
cannot disappear, unless it hits the left or right edge
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of the one-dimensional chain. The mean exit time for a
random walker among two absorbing walls is well known
and depends on the initial position of the walker, which
is determined by the proportion p, exactly as indicated
in formula (27). The same consideration of a random
walker with two absorbing walls also explains the linear
dependence of P+ observed in fig. 4.
For the second case of correlated initial conditions,

which are completely homogeneous, we observed in
computer simulations that the exit probability is a step
function with an unstable fixed point at p= 0.5, i.e.

P+ = 0, for p < 0.5,

P+ = 1, for p > 0.5,

antiferromagnetic state, for p= 0.5.

(28)

In this case the two-spins correlation function can be also
calculated easily. For p= 1

n
< 0.5, n= 3, 4, . . . , L we obtain

C1(1; 0) = p

(
1×
(
1

p
− 2
)
+(−1)× 2

)
= 1− 4p. (29)

Thus, from eq. (20)

C0(∞)� 2C0(0)

1+C1(1; 0)
=
4p− 2
2− 4p =−1⇒ P+ = 0, (30)

which again agrees very well with computer simulations,
although the Kirkwood approximation cannot be easily
justified.

Conclusions. – We introduced a modified version of
the one-dimensional outflow dynamics in which we choose
a pair of neighbours and if they both are in the same
state, then we adjust one (in the original version both)
of its neighbours to the common state. We checked in
computer simulations that in accord with our expectations
the results in the case of a modified rule are the same
as in the case of the original outflow dynamics, only the
time must be rescaled by a factor 12 . In the modified
version the analytical treatment is greatly simplified and
allows to derive the master equation involving only single-
flip events. Following the method proposed in [13] we
wrote evolution equations for some correlation functions
and used the Kirkwood approximation. This approach
allowed us to derive the analytical formula for the final
magnetisation and, equivalently, for the exit probability.
In fact, just before finishing this paper, the same result
was published by Lambiotte and Redner as a special case
in the work [21] where a model interpolating the voter,
the majority rule (or Sznajd) and the so-called vacillating
voter dynamics was investigated, using also the Kirkwood
approximation.
In the case of random initial conditions the Kirkwood

approximation can be justified looking at the time
evolution of simulated correlation functions. In this
case our analytical results can be simplified to eq. (22)

and agree very well with simulations, in contrast to
earlier approaches [17,19]. We have checked also how the
Kirkwood approximation works in the case of two types
of correlated initial conditions. Although in both cases
the Kirkwood approximation cannot be easily justified,
surprisingly we obtained very good agreement of our
formula (20) with computer simulations. The validity
of the formula is much wider than the validity of the
Kirkwood approximation used in its derivation.
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Phase transition in a one-dimensional Ising ferromagnet at zero temperature using Glauber
dynamics with a synchronous updating mode
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In the past decade low-temperature Glauber dynamics for the one-dimensional Ising system has been several
times observed experimentally and occurred to be one of the most important theoretical approaches in a field
of molecular nanomagnets. On the other hand, it has been shown recently that Glauber dynamics with the
Metropolis flipping probability for the zero-temperature Ising ferromagnet under synchronous updating can
lead surprisingly to the antiferromagnetic steady state. In this paper the generalized class of Glauber dynamics
at zero temperature will be considered and the relaxation into the ground state, after a quench from high
temperature, will be investigated. Using Monte Carlo simulations and a mean field approach, discontinuous
phase transition between ferromagnetic and antiferromagnetic phases for a one-dimensional ferromagnet will
be shown.

DOI: 10.1103/PhysRevE.82.031120 PACS number�s�: 64.60.De

I. INTRODUCTION

Glauber dynamics for the Ising spin chain has been
known for almost 50 years �1�, but only recently it became a
really hot topic, not only from a fundamental, but also an
applicative point of view �2–8�. It is well known that a
purely one-dimensional �1D� system exhibits long-range or-
dering only at zero temperature T=0 K. Nevertheless, in
some situations long relaxation times for the magnetization
reversal with decreasing temperature can be observed, and
finally at significantly low temperatures, the material can be-
have as a magnet. The phenomenon of slow magnetic relax-
ation is considered as one of the most important achieve-
ments of molecular magnetism, opening exciting new
perspectives including that of storing information �9,10�.
Slow relaxation of the magnetization, predicted in the 1960s
by Glauber in a chain of ferromagnetically coupled Ising
spins �1�, in materials composed of magnetically isolated
chains was observed for the first time in 2001 �2�. In 2002,
this new class of nanomagnets was named single-chain mag-
nets �SCM� �3� �for a recent review see �8�� and the Glauber
dynamics for the one-dimensional Ising spins system became
one of the most important theoretical approaches for SCM.

Within the Glauber dynamics for Ising spins with a spin
s=1 /2, in a broad sense, each spin is flipped Si�t�→−Si�t
+1� with a rate W��E� per unit time and this rate is assumed
to depend only on the energy difference implied in the flip.
In this paper we consider the generalize class of zero-
temperature dynamics defined as

W��E� = � 1 if �E � 0,

W0 if �E = 0,

0 if �E � 0,
� �1�

which occurred to be very interesting not only from an ap-
plicative perspective, but also from a theoretical point of

view as an example of nonequilibrium dynamical systems
with many attractors �11�. The zero-temperature limits of the
original Glauber dynamics �1� and Metropolis rates �12� �two
the most popular choices� are respectively W0

G=1 /2 and
W0

M =1.
Glauber dynamics was originally introduced as a sequen-

tial updating �SU� process �1�. Also Monte Carlo method,
used frequently for various models in statistical physics, as
proposed originally by Metropolis et al. �12�, is essentially
SU process. Evolution under dynamics defined by Eq. �1�
with random sequential updating is already well known in a
case of one-dimensional system and can be derived analyti-
cally �11�. For any nonzero value of the rate W0 ferromag-
netic steady state is reached and the dynamics belongs to the
universality class of the zero-temperature Glauber model �1�.
The particular value W0=0 corresponds to the constrained
zero-temperature Glauber dynamics ��11� and references
therein�. In the constrained zero-temperature Glauber dy-
namics, the only possible moves are flips of isolated spins
and therefore the system eventually reaches a blocked con-
figuration, where there is no isolated spin �11�, i.e., for W0

=0 the relaxation time to the ferromagnetic steady state is
infinite.

The case of the synchronous updating, in which all units
of the system are updated at the same time, is much more
interesting. Moreover, clear evidence of a relaxation mecha-
nism which involves the simultaneous reversal of spins has
been shown experimentally for magnetic chains at low
temperatures �15�.

In �20� more general form of zero-temperature Glauber
dynamics has been investigated than one defined by Eq. �1�.
They have studied a model with two parameters � and �,
which can be presented at T=0 analogously to Eq. �1� as
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W��E� = �
��1 + �� if �E � 0,

�

2
�1 − �� if �E = 0,

0 if �E � 0,
� �2�

where again W��E� denotes the flipping rate per unit time. To
fulfill the condition W��E�� �0,1�, as seen from Eq. �2�, the
following relations have to be satisfied,

− 1 � � �
1 − �

�
,

� − 2

�
� � � 1. �3�

Above relations correspond to the region between thick lines
in Fig. 1. In �20� the region denoted by the gray color in Fig.
1 has been investigated �i.e., ��0, �� �0,1��. Comparing
Eqs. �1� and �2� we can easily derive the following relations:

� = W0 +
1

2
,

� =
1/2 − W0

1/2 + W0
, �4�

which are parametric expression of the upper bold line of
Fig. 1. In this paper we consider one-parameter model de-
fined by Eq. �1� with W0� �0,1� and therefore we are able to
investigate only upper bold line of Fig. 1 defined by Eq. �4�.

II. SIMULATION AND MEAN FIELD RESULTS

We consider the chain of L Ising spins �i= �1
�i=1,2 , . . .L� with the periodic boundary conditions. In the

initial state each lattice site is occupied independently by a
randomly chosen value +1 or −1, both equally probable
�high temperature situation�. In every time step all spins are
considered simultaneously, but each spin is flipped indepen-
dently with probability W��E� defined by Eq. �1�. It occurs
that for all W0� �0,1� system eventually reaches one of the
two final states—ferromagnetic steady state or antiferromag-
netic limit cycle. If we measure the density of active bonds
�bond is active if connects two sites with opposite spins�:

� =
1

2L
�
i=1

L

�1 − �i�i+1� , �5�

we obtain in the final state �st=1 �antiferromagnetic state� or
�st=0 �ferromagnetic state�.

The time evolution of the mean value �averaged over 104

samples� of the density of active bonds measured in Monte
Carlo steps �MCS� is presented in Fig. 2. This is seen that for
W0�0.5 the average number of active bonds decreases in
time and eventually the system reaches the ferromagnetic
steady state ����	�	= ��st	=0�, while for W0�0.5 it increases
and eventually antiferromagnetic limit cycle is reached
����	�	= ��st	=1�. Results presented in Fig. 2 show that for
W0=0.5 there is a phase transition between ferromagnetic
and antiferromagnetic phase.

This phase transition can be predicted using the mean
field approximation �MFA� analogously as it was done in
�20�. In �20� the mean field equations for the density of ac-
tive bonds and magnetization have been derived,

d�

dt
= 2����1 − 3� + 2�2� ,

0.5 1 1.5
−1

−0.5

0

0.5

1

Γ

δ

W
0
=0.5

FIG. 1. Thick lines correspond to equations �= �1−�� /� and
�= ��−2� /�. The region between these two lines corresponds to the
condition W��E�� �0,1� �see Eq. �2��. In �20� the region denoted
by the gray color has been investigated �i.e., ��0, �� �0,1��. In
this paper we consider one-parameter model defined by Eq. �1� and
therefore we are able to investigate only upper bold line defined by
Eq. �4�.
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FIG. 2. �Color online� The time evolution of the mean value of
the density of active bonds ��	 measured in Monte Carlo steps for
the lattice size L=160 is presented. Averaging was done over 104

samples. For W0�0.5 the mean number of active bonds decreases
in time to 0 �ferromagnetic steady state� and for W0�0.5 increases
to 1 �antiferromagnetic limit cycle�.
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dm

dt
= − ��m�m2 − 1� . �6�

Using relations �4� we can easily rewrite above equations in
the case of our one-parameter model,

d�

dt
= �1 − 2W0���1 − 3� + 2�2� ,

dm

dt
= 
W0 −

1

2
�m�m2 − 1� . �7�

As we see there are three types of fixed points,

mst = � 1 and �st = 0,

mst = � 0 and �st = 1/2,

mst = � 0 and �st = 1.

In �20� only two first types have been considered:
�i� �st=0 �ferromagnetic state with mst=−1,1�
�ii� �st=1 /2 �so called active phase�.
However, there is a third fixed point �st=1, mst=0,

which corresponds to antiferromagnetic steady state found in
our computer simulations.

Let us first consider stability of the magnetization fixed
points. For W0�0.5 we can easily check that �mst�=1 �ferro-
magnetic order� is an absorbing state, since from Eq. �7�,

dm

dt
� 0 for m � �− 1,0� → mst = − 1,

dm

dt
� 0 for m � �0,1� → mst = 1. �8�

Analogously, for W0�0.5 we obtain from Eq. �7� that mst
=0,

dm

dt
� 0 for m � �− 1,0� → mst = 0,

dm

dt
� 0 for m � �0,1� → mst = 0. �9�

Therefore, MFA equation for magnetization predicts the
phase transition for W0=0.5 between ferromagnetic phase
�mst�=1 and phase with magnetization equal zero.

Now we can check stability of the MFA equation for ac-
tive bonds. For W0�0.5 we obtain from Eq. �7� that �st
=1 /2 is the stable point �active phase �20��:

d�

dt
� 0 for � � �0,1/2� → �st = 1/2,

d�

dt
� 0 for � � �1/2,1� → �st = 1/2. �10�

Analogously, for W0�0.5 we can easily check that

d�

dt
� 0 for � � �0,1/2� → �st = 0,

d�

dt
� 0 for � � �1/2,1� → �st = 1. �11�

As we see there is a contradiction in a simple MFA equa-
tions. Considering only equation for m one can easily check
that for W0�0.5 there is a ferromagnetic absorbing state
�mst�=1, while for W0�0.5 we obtain mst=0, which might be
associated with antiferromagnetic phase �if simultaneously
�st=1� or active phase �if simultaneously �st=0�. However, if
one considers the MFA equation for � it occurs that for W0
�0.5 �st=0.5 �active phase�, while for W0�0.5 �st=0 in a
case of � between 0 and 0.5 �ferromagnetic phase� or �st
=1 in a case of � between 0.5 and 1 �antiferromagnetic
phase�.

Inconsistency in equations is clearly visible for W0�0.5,
in which �mst�=1 and simultaneously �st=0.5 �instead of �st
=0, which is valid for ferromagnetic phase�. For W0�0.5
MFA results are more reasonable, since mst=0 and �st=0 or
1. Of course only the second possibility is consistent and
corresponds to antiferromagnetic phase. Contradiction which
is present in MFA equations follows from MFA equation for
the density of active bonds. This is understandable since, due
to the Eq. �5�, correlations between neighboring sites �which
are not considered in a simple MFA� are essential for �.

Nevertheless, summing up above considerations, MFA
equations suggest discontinuous phase transition for W0
=0.5 between ferromagnetic and antiferromagnetic phase.
This should be noticed that the transition value W0=0.5 cor-
responds to the original Glauber dynamics �1�.

In the case of discontinuous phase transition one would
expect the phase coexistence. We have provided computer
simulations to confirm this mean field result and indeed co-
existence of ferro- and antiferromagnetic phases can be ob-
served near the transition point W0=0.5 �see Fig. 3�. For
W0=0.5 both types of clusters �ferro- and antiferromagnetic�
are nearly the same size and after a long-time competition
between them eventually one of two possible steady states is
reached. Because for W0=0.5 both of them are equally prob-
able we see the constant value of the average density of
active bonds in Fig. 2. Let us now investigate the phase
transition more quantitatively using Monte Carlo simula-
tions.

Following �14,20�, we use as an order parameter the mean
value of the density of active bonds. We provide Monte
Carlo simulations and wait until the system reaches the final
stationary state. Dependence between order parameter in the
stationary state ��st	 and the flipping probability W0 is pre-
sented in Fig. 4, showing again clearly discontinuous phase
transition for W0=0.5 in agreement with the mean field re-
sult. In the case of W0�0.5 the ferromagnetic steady state is
obtained with probability 1 �for the infinite system L=	�.
For W0�0.5 the antiferromagnetic state is always reached,
i.e., the stationary states losses any remnants of the ferro-
magnetic Ising interactions.

One of the most important issues connected with the
coarsening is the relaxation time 
, i.e., time needed to reach
the ground state. In this paper we measure the relaxation
time starting from the random initial conditions and counting
how many Monte Carlo steps is needed to reach the steady
state ��=1 or �=0�. We average over N=104 samples and
calculate the mean relaxation time,

PHASE TRANSITION IN A ONE-DIMENSIONAL ISING… PHYSICAL REVIEW E 82, 031120 �2010�

031120-3



�
	 =
1

N
�
i=1

N


i, �12�

where 
i is the relaxation time of ith sample. In Fig. 5 �
	
divided by the square of the lattice size L as a function of the
flipping probability W0 is shown. This is seen that for W0

=0.5 the mean relaxation time scales as �
	
L2, which is
well known result in a case of sequential updating �16,17�.
The dependence between the mean relaxation time �
	 and
the flipping probability W0 is nonmonotonical. For W0→0
the relaxation time grows rapidly �18,19�, which can be un-
derstood recalling that �
	 if infinite for W0=0 �11�. For in-
creasing W0 the mean relaxation time decreases up to a cer-
tain point W0

min�L�. However, due to the phase transition in
W0=0.5, for W0� �W0

min�L� ,0.5� it grows again, resulting
nonmonotonic behavior shown in Fig. 5. The maximum peak
is narrower with the growing lattice size, which is expected
behavior for the phase transition. The minimal value W0

min�L�
depends on the system size L as W0

min�L�=−2.5 /L+0.5 and
therefore limL→	 W0

min�L�→0.5. The mean relaxation time
for this minimal value scales with the system size as
�
�W0

min�	
L2, i.e., with the same exponent as for the tran-
sition point W0=0.5.

The most important question here is the one concerning
the origin of the phase transition. As it was mentioned above,
in the case of Metropolis flipping rate �W0=1� the system
reaches antiferromagnetic limit cycle, instead for the ferro-
magnetic steady state �13,14�. It can be easily understood,
because for the flipping probability W0=1, the case of syn-
chronous updating is fully deterministic �see an example be-
low�:

¯↑↑↑↓↓↓ ¯ ,

¯↑↑↓↑↓↓ ¯ ,

¯↑↓↑↓↑↓ ¯ ,

¯↓↑↓↑↓↑ ¯ ,

¯↑↓↑↓↑↓ ¯ . �13�

FIG. 3. The time evolution of the Ising spins chain of the length
L=160 is presented. Black points represent active bonds and thus
black regions correspond to antiferromagnetic and white to ferro-
magnetic clusters. Coexistence of both types of clusters is visible
for W0�0.5. For W0=0.5 both types of clusters are nearly the same
size and there is a long-time competition between them leading
eventually to one of two possible steady states �ferromagnetic or
antiferromagnetic�
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FIG. 4. �Color online� Density of active bonds �st in stationary
state as a function of flipping probability W0 �so called exit prob-
ability� averaged over 104 samples. In the thermodynamical limit
L→	 for W0�0.5 ferromagnetic steady state is reached with prob-
ability one ��st=0� and for W0�0.5 antiferromagnetic steady state
is reached with probability one ��st=1�. Note that, the transition
value W0=0.5 corresponds to the original Glauber dynamics.
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FIG. 5. �Color online� The mean relaxation times �
	 divided by
the square of lattice size L as a function of flipping probability
W0� �0.48,0.52�. Averaging was done over 104 samples. Note that
for W0=0.5 relaxation time scales with the system size as �
	
L2.
However, for W0�0.5 scaling exponent differs from known value
�=2 �see Fig. 6�.
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On the other hand, only for W0=1 updating is really syn-
chronous. For decreasing W0 only isolated spins are con-
cerned really synchronously, since in the case of isolated
spins �E�0 �see Eq. �1�� the flip is provided with the prob-
ability 1. Flipping of isolated spins leads clearly to growth of
ferromagnetic domains. Let us introduce for a while a nota-
tion L�E=0 for the number of spins that flipping would not
change the energy and L�E�0 for the number of spins that
flipping would decrease the energy. The flip for �E=0 is
realized with the probability W0 and for �E�0 with the
probability 1, which means that on average L�E�0+W0L�E=0
is flipped in a single time step. In the case of W0=1, as
mentioned above, the antiferromagnetic order is reached. On
the other hand, for W0=1 /L�E=0 on average only one not
isolated spin �i.e., with �E=0� is flipped in a single time step,
similarly to the case of the sequential updating for the system
without isolated spins. Thus, because in the case of sequen-
tial updating ferromagnetic steady state is reached, one can
expect also ferromagnetic order in the case of synchronous
updating for small values of W0. Clearly the phase transition
must occur somewhere between the antiferromagnetic order,
preferred by a fully synchronous updating �W0=1�, and the
ferromagnetic steady state, preferred by sequential updating
�W0=1 /L�E=0�.

As mentioned above, for W0=0.5 and W0=W0
min�L� the

mean relaxation time scales with a system size as 
L2. We
have checked also the scaling for other values of W0. For all
values of W0 the mean relaxation time scales with the system
size nearly as �
	
L� with ��2 �see Fig. 6�. However, for
different values of W0 the scaling exponent � slightly varies.
The dependence between scaling exponent and the flipping

probability is presented in Fig. 7. The shape of the curve
��W0� mimic the shape of �
�W0�	.

III. SUMMARY

In this paper we have been investigating the relaxation of
the Ising spins chain under the generalized class of Glauber
dynamics at zero-temperature. Within such a dynamics, the
flipping probability in a case of conserved energy is given by
arbitrary value of W0� �0,1� �review in a case of sequential
updating can be find in �11��. We have proposed to use syn-
chronous updating for such a generalized class of zero-
temperature dynamics. Our motivation for this work came
from recent experiments showing slow relaxation in mag-
netic chains at low temperatures �2–8,15�. We have shown
by Monte Carlo simulations that there is a phase transition
for W0=0.5, which correspond to the value originally pro-
posed by Glauber �1�:

�i� for W0�0.5 ferromagnetic fixed point �mst= �1, �st
=0� is stable

�ii� for W0�0.5 antiferromagnetic fixed point
�mst=0, �st=1� is the stable one.

Following �20� we were able to obtain the mean field
result which also suggests phase transition between ferro-
and antiferromagnetic phases for W0=0.5.
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Abstract – We propose a model of opinion dynamics which describes two major types of social
influence —conformity and independence. Conformity in our model is described by the so-called
outflow dynamics (known as Sznajd model). According to sociologists’ suggestions, we introduce
also a second type of social influence, known in social psychology as independence. Various social
experiments have shown that the level of conformity depends on the society. We introduce this
level as a parameter of the model and show that there is a continuous phase transition between
conformity and independence.

Copyright c© EPLA, 2011

Introduction. – Opinion dynamics is one of the most
studied subjects in the field of sociophysics. Among a
number of models that have been proposed (for a recent
review see [1]), simple models based on Ising spin variables
are particularly interesting. In all these models, from
the voter model [2], majority rule [3,4] to the Sznajd
model [5], opinions are described by discrete variables
S =±1. The ferromagnetic state is an attractor for all
three models in one and two dimensions, as well as in
the case of complete graphs [1]. Obviously, in real social
systems complete unanimity is never reached. Moreover,
in real systems the public opinion does not reach any
fixed point and permanently changes. To make models of
opinion dynamics more realistic, Galam has proposed two
modifications:

– Contrarian behavior [6] —with a certain probability
an agent adopts the choice opposite to the prevailing
choice of the others, whatever this choice is.

– Inflexibles [7] —inflexible agents keep their opinion
always unchanged.

As shown by Galam, for a low concentration of contrarians
a new mixed phase is stabilized, with a coexistence of
both opinions, i.e. minority persists. Moreover, there is
a phase transition into a new disordered phase with no
dominating opinion. It has been shown that introduction
of contrarians make the tendency towards extremism

(a)E-mail: kweron@ift.uni.wroc.pl

of the original model weaker also in the case of the
CODA model [8], in which agents have internal continuous
opinions, but exchange information only about a binary
choice. In the case of the Sznajd model, contrarian
behavior has been studied for the first time by de la
Lama et al., [9] and the same results have been obtained.
As suggested by Galam [6], these results may be put
in parallel with “hung elections” in America (2000) and
Germany (2002).
In the field of social psychology, contrarian behavior,

introduced by Galam in [6], is nothing more than anti-
conformity —a particular type of non-conformity [10].
There are two widely recognized types of non-conformity:
anticonformity and independence. From a social point of
view, it is very important to distinguish between indepen-
dence and anticonformity [11]. The term “independence”
implying the failure of attempted group influence. Inde-
pendent individuals evaluate situations independently of
the group norm. On the contrary, anticonformists are simi-
lar to conformers in the sense that both take cognizance
of the group norm —conformers agree with the norm,
anticonformers disagree. As noticed in [11]: This behav-
iour is a bit of a paradox, because in order to be vigi-

lant about not doing what is expected, one must always be

aware of what is expected. In contrast, truly independent

people are oblivious to what is expected. Numerous stud-
ies have shown that the level of conformity/anticonformity
depends on the society (culture, age, etc.) [11,12]. More-
over, the degree of individualism represents one of the
5 dimensions of cultures, i.e. aspect of a culture that
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can be measured relative to other cultures [13]. It has
been measured that among 50 countries surveyed, United
States has the highest Individualism Index Value (IDV=
91), whereas Guetemala the lowest (IDV= 6). High IDV,
which varies between 0 and 100, indicates a loose connec-
tion with people. This means that in spite of individual
differences, global thinking of relationship between the
individual and the group is dramatically different in each
country [13]. Independence is not identical with IDV, since
it is defined on the individual level. However, one could
expect that independent behavior is more common in the
society with high IDV. For example, the level of indepen-
dent behavior is much lower in Japan than in America [11]
and simultaneously IDV= 46 in Japan, which is over two
times less than in US [13].
In this paper we examine the influence of independence

on the Sznajd model in one and two dimensions, as
well as on a complete graph. We show that contrarians
are not needed in order to obtain phase transitions
as in [6,9] and similar results can be observed in the
presence of independent behavior. Below a certain critical
independence value pc, the minority opinion coexists with
the majority and above pc there is no majority in the
society, the system is in the so-called stalemate state. This
is not surprising, since both contrarian and independent
behavior plays the role of noise and one of the main effects
of noise is to induce an order-disorder transition. The same
result has been obtained recently for the Deffuant et al.
model for continuous opinion dynamics [14].
To generalize our model and make it more realistic from

a social point of view, we introduce also a flexibility factor
f , which describes what is the probability of an opinion
change in the case of independent behavior. We show, both
analytically (for complete graphs) and using Monte Carlo
simulations, that the critical threshold of independence pc
decays with the flexibility factor f . This means that in an
inflexible (conservative) society the critical independence
factor is high. This result implicates that in conservative
societies, even if the level of independence is high, there
is always a majority in the system —in the case of
democratic voting, one of the two options wins.

Model. – We consider a set of N individuals, which are
described by the binary variables: S = 1 (↑) or S =−1 (↓).
At each elementary time step, a group of people is chosen
randomly and it influences its surrounding individuals. In
the original model [5] only one type of social influence
(conformity) was considered:

1) On a complete graph, two individuals are chosen at
random and they influence a third randomly chosen
individual [15].

2) In one dimension (1D), a pair of neighboring individu-
als SiSi+1 is chosen and it influences two neighboring
sites Si−1, Si+2. In this paper, to be consistent with
the case of a complete graph, we will use the modi-
fied version in which only one of the two (left Si−1 or

right Si+2), chosen randomly, will be changed. This
kind of modification has been introduced for the first
time by Slanina [16].

3) Several possibilities of generalization to the square
lattice were proposed by Stauffer et al. [17]. Here we
use probably the most popular rule —a 2× 2 panel of
four neighbors is chosen randomly and influences its
surroundings. In this paper we use a modified version
to be consistent with the rules above —only one out
of the 8 neighbors of the panel is randomly chosen to
be changed.

As mentioned earlier, there are many factors that
affect the likelihood of conformity, among them culture
is one of the most important. Therefore, in this paper
we introduce a second type of social response, known
as independence. With probability p, an individual Sk
chosen to be changed will not follow the group, but
act independently; with probability f it will flip, i.e.
Sk→−Sk and with probability 1− f stay unchanged, i.e.
Sk→ Sk. The parameter f is called flexibility, since it
describes how often an individual will change its opinion in
case of independent behavior. With probability 1− p the
individual will follow the usual Sznajd conformity rules,
described above. It should be repeated here that although
independence is an individual psychological trait, it is
connected with cultural dimension called individualism.
Therefore, the value of parameter p can be understood as
a mean value of independence within a particular society.

Model on a complete graph. – We consider a set of
N Ising spins Si =±1, i= 1, . . . , N on a complete graph.
In each elementary time step t two spins Si and Sj are
chosen randomly. They will influence a third randomly
chosen spin Sk in the following way:

– conformity (original Sznajd rule), with probability
1− p: Sk(t+dt) = Si(t) if Si(t) = Sj(t), otherwise
Sk(t+dt) = Sk(t),

– independence, with probability p: Sk(t+dt) =
−Sk(t), with probability f or Sk(t+dt) = Sk(t), with
probability 1− f .

Time t→ t+1 after N elementary time steps, i.e. dt=
1/N .
In the case of a complete graph, the state of the system

is completely described by the magnetization (or public
opinion from a social point of view) defined as

m(t) =
1

N

N∑
i=1

Si(t). (1)

Let us denote by N↑ the number of spins “up” and by
N↓ the number of spins “down”. We can easily derive the
formula for the probability of choosing randomly a spin
S =+1:

P+(t) =
N↑
N
=
1+m(t)

2
. (2)
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Fig. 1: Stationary value of magnetization for two values of the
flexibility factor, f = 0.5 (solid line) and f = 0.25 (dotted line),
from analytical calculations and from Monte Carlo simulations
for the system size N = 103. Averaging was done over 103

samples.

The evolution of the system is described by the following
equation:

P ′+−P+ = pfP−− pfP++(1− p)P
2
+P−− (1− p)P

2
−P+,
(3)

where we use the notation P ′+ ≡ P+(t+dt) and P+ ≡
P+(t) and the probability of choosing a “down” spin
is P− = 1−P+. We look for fixed points of the above
transformation:

P ′+−P+ = 0. (4)

The equation above has the following solutions:

P 0+ = 1/2 for p∈ [0, 1]

P 1,2+ =
1− p±

√
(Δ)

2(1− p)
for p <

1

1+4f
,

(5)

where Δ= (1− p)(1− p− 4pf). Fixed points for the
magnetization can be easily calculated from relation (2)
and are presented in fig. 1. There is a continuous phase
transition at pc = 1/(1+ 4f) – for p < pc minority coexists
with majority and for p > pc there is a stalemate (status
quo) situation. To confirm our analytical results, we have
provided Monte Carlo simulations on a complete graph,
for several lattice sizes. Initially the system has been
ferromagnetically ordered (m(0) = 1) and then evolved
according to the algorithm described in this section.
These results are presented in fig. 1 and agree with the
analytical prediction.

Scaling. – Although the model considered in this paper
has 2 parameters, independence p and flexibility f , it
can be shown that in fact results depend on the ratio
pf/(1− p+ pf) (see fig. 2). To show this scaling let us

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

pf/(1−p+pf)

m

simulations: f=0.5

simulations: f=0.25

analytical: f=0.5

analytical: f=0.25

Fig. 2: Rescaled results from fig. 1.

first sum up the rules of the model as:

– Rule I : the usual Sznajd rule,

– Rule II : a site is flipped (Si→−Si),

– Rule III : nothing happens.

At each iteration, we choose a group of sites that will
attempt to convince one of their neighbours, chosen at
random, then one of the 3 rules above is chosen at random
to be followed by this chosen neighbour, with the rules
I, II and III being followed with probability 1− p, pf
and p(1− f), respectively. Firstly, we note that rule III
does not change the state of the system (the opinions of
each of the sites) and that the parameters p and f are
not important in a given iteration, once the rule to be
followed is chosen. Suppose now that we keep records of
the state of the system after the iterations where either
rule I or rule II was followed. These records would form
a sequence of states, whose statistical properties depend
only on the initial conditions and on the ratio between the
probabilities of following rule I and II:

r=
pf

1− p
. (6)

So if two models have parameters (p, f) and (p′, f ′) such
that r= r′, then they would both generate statistically
similar sequences, given the same initial conditions. In
order to compare both models, we need to make simu-
lations with lengths t and t′ such that the mean number
of records is the same. As we follow either rule I or rule
II with probability 1− p+ pf , this means that t(1− p+
pf) = t′(1− p′+ p′f ′).
We are interested in the behavior of the magnetization
m(t, p, f), so if we define M(t, p) =m(t, p, 1), we can peek
f ′ = 1 and solve for p′ and t′:{

t′ = t(1− p+ pf),
p′ = pf/(1−p+pf).

(7)
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It follows that plotting m(t/(1−p+pf), p, f) against
pf/(1−p+pf) should collapse the curves, as

m

(
t

1− p+ pf
, p, f

)
=M

(
t,

pf

1− p+ pf

)
. (8)

We have used the scaling given by eq. (7) and indeed the
data collapses in the case of a complete graph (see fig. 2).
In the next sections we will see that the scaling derived
here is valid also in the case of one- and two-dimensional
lattices.
In fig. 2 we can see a phase transition between the situ-

ation where a majority exists and the stalemate situation.
This transition happens for a value of independence pc,
that depends on the flexibility value f . We can apply this
scaling to find that this dependence must be of the form

pc =
1

1+αf
, where α=

1

Pc
− 1 (9)

and Pc is the critical independence for f = 1. This means
that if there is a phase transition, then the critical value
of independence decreases with increasing flexibility. We
will give some interpretations for this further down, when
the model in a two-dimensional lattice is analyzed.

Model on a one-dimensional lattice. – We consider
a chain of length N with periodic boundary conditions.
Each site i= 1, . . . , N of the chain is occupied by an Ising
spin Si =±1. At each time step we choose randomly a spin
Si and side s (s= 1 for right, s=−1 for left). The updated
state is

– conformity (original Sznajd rule), with probability
1− p: Si(t+dt) = Si+s(t) if Si+s(t) = Si+2s(t), other-
wise Si(t+dt) = Si(t),

– independence, with probability p: Si(t+dt) =−Si(t),
with probability f or Si(t+dt) = Si(t), with proba-
bility 1− f .

Time t→ t+1 after N elementary time steps, i.e. dt=
1/N . We have chosen as an initial condition, ferromagnetic
order (m(0) = 1). We made Monte Carlo simulations for
several lattice sizes N = 4× 102, 9× 102, 64× 102, 104, 4×
104, but here we present results for only one selected lattice
size, N = 104. We have measured the magnetization of the
system after various “termalization” times τ ∈ [10, 104].
The averaging has been done over 103 samples. First of all,
we notice that the scaling found in the previous section
and given by eq. (7) is still valid for one-dimensional
systems —see fig. 3.
The results presented in fig. 3 suggest the existence of a

phase transition, which is unexpected for one-dimensional
systems with short-range interactions. However, one
should remember that the initial state in our simulations
was ordered (m(0) = 1). Starting from this ordered state,
the system evolves toward a stationary state that depends
on the ratio pf/(1− p+ pf). After a short “termalization”
time, like in fig. 3, the system might be still ordered
but finally it will reach its real steady state, which is
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Fig. 3: Relationship between the magnetization m and the
independence factor p for several values of the flexibility factor
f , for a one-dimensional system of size N = 104 (upper panel).
The system evolved (“termalized”) from an initially ordered
state, m(0) = 1. “Termalization” time was τ = 500MCS and
averaging was done over 103 samples. The scaling found in the
case of a complete graph still works (bottom panel).

expected to be disordered. To check the validity of our
expectations let us now present the dependence between
the magnetization m and the independence factor p,
for several “termalization” times τ and a given value of
flexibility f = 1/2 (fig. 4). It has been seen that with
an increasing τ the threshold value p∗, below which
the system is ordered, decreases, suggesting the lack of
the phase transition in one dimension. For the infinite
system, N →∞ and τ →∞, order is present in the system
only for pf/(1− p+ pf) = 0. This is an expected result,
because only short-range interactions are present in the
model and the independence pf/(1− p+ pf) plays the
role of a temperature.

Model on a square lattice. – In this section we
consider a square lattice L×L with periodic boundary
conditions. Each lattice site is occupied by an individual,
characterized by a binary opinion Si =+1 (in favor) or
Si =−1 (against). In each elementary time step t, a
2× 2 box of four neighboring spins is chosen randomly
and influences one of the 8 neighboring sites of the box,
denoted as Si. In this paper, we use a modified version of
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Fig. 4: Dependence between the magnetization m and the
independence factor p, for a flexibility factor f = 0.5, several
“termalization” times, τ , and a one-dimensional system of size
N = 104. The system evolved (“termalized”) from an initially
ordered state, m= 1. Averaging was done over 103 samples.
With an increasing τ , the critical value pc is decreasing,
suggesting the lack of the phase transition in one dimension.

the two-dimensional model introduced to study duopoly
markets in [18], therefore we update the state in the
following way:

– Conformity, with probability 1− p: If all four spins
in the box have the same value, they will convince
one of the eight nearest neighbors Si, changing its
orientation in the direction of the spins in the box.
If one of the spins in the box has the opposite
orientation to the other three spins, then the neighbor
changes its orientation to the orientation of the
majority, with probability 3/4. In the case when there
is no majority, i.e. two spins in the panel are up and
two are down, nothing changes, i.e. Si(t+dt) = Si(t).

– Independence, with probability p: Si(t+dt) =−Si(t),
with probability f or Si(t+dt) = Si(t), with proba-
bility 1− f .

We measure again the magnetization as a function of
the independence factor p for several values of the flexi-
bility factor f (see fig. 5). In the case of the square lattice
there is no doubt that there is a well defined continuous
phase transition (see fig. 6) at p= pc. As in the other cases,
scaling (given by eq. (7)) is valid and the critical value pc
of independence increases with decreasing flexibility f .
This means that in the case of high f (non-conservative

societies) consensus is possible only in the case of low
independence (high conformity). For example (see fig. 5),
for a relatively conservative society with f = 1/16 the
critical independence is pc ≈ 0.8. This means that for
a level of independence up to 4/5 there is a majority
in the society. If the society is less “conservative”, e.g.,
f = 1/4 then the critical value of independence is pc ≈ 0.5.
This means that if the level of independence were, for
example, p= 0.7 there would be no majority in the system
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Fig. 5: Dependence between the magnetization m and the
independence factor p for several values of the flexibility factor
f , in the case of a square lattice, 101× 101. The system
evolved (“termalized”) from an initially ordered state, m(0) =
1. “Termalization” time was τ = 500MCS and averaging was
done over 103 samples. The critical value of independence pc
decays with flexibility f (upper panel). The scaling found in
the case of a complete graph still works (bottom panel).
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Fig. 6: Dependence between the magnetization m and the
independence factor p, for a flexibility factor f = 0.5, several
“termalization” times, τ , and a square lattice, 101× 101. The
system evolved (“termalized”) from an initially ordered state,
m(0) = 1. Averaging was done over 103 samples.
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(status quo), while for the same value of p in the case of
f = 1/16 consensus would be possible. This result could
be one of the possible explanations for why the status-quo
situation is more and more common in modern societies.
Another explanation, connected with the public debate,
has been proposed several years ago by Galam [6].

Summary. – In this paper we have introduced a modi-
fied version of the original Sznajd model, in which two
types of social influence were considered —independence
(with probability p) and conformity (with probability
1− p). Conformity in our model has been modeled analo-
gously to the Sznajd model, i.e. in the case of conformal
behavior, individuals have followed the group norm. Of
course, this type of social influence could be modeled also
by the voter or majority models. In the case of independent
behavior individuals take actions (change opinion) inde-
pendently of the group norm. Of course, even in the case
of independent behavior an individual can change opinion,
but it does not depend on the social norm. Therefore, we
have introduced a flexibility factor f , which denotes the
probability of opinion changes in the case of independent
behavior —varying f we can model the level of conser-
vatism in the society.
We have studied the model in three cases: complete

graphs, one-dimensional systems and two-dimensional
square lattices. We found that, in the case of the complete
graph and of the two-dimensional system, there is phase
transition for a critical value of independence pc =

1
1+αf ,

where α is a constant that depends on the lattice. In the
case of a complete graph it can be calculated analytically
as α= 4. Below the critical value of independence, p < pc,
the majority coexists with the minority, i.e. the public
opinion is m 	= 0. Therefore, in the case of a democratic
voting, one of the two options wins. For high indepen-
dence, p > pc, there is a stalemate situation in the society,
i.e. m= 0.
This is particularly interesting result from the social

point of view (both marketing and cultural studies). Vari-
ous empirical studies correlates two cultural dimensions
—Individualism (IDV), that has been already described in
the introduction, and Power/Distance (PD) indexes [13].
PD measures the extent to which the less powerful individ-
uals accept that power is distributed unequally in a soci-
ety. For example, Germany has PD= 35 on the cultural
scale of Hofstede’s analysis, whereas in Arab countries
PD= 80 and Austria PD= 11. It has been shown in empir-
ical studies that societies with low IDV accepts an unequal
distribution of power (high PD) [13]. Empirical studies
show also the influence of the cultural dimensions on
the market shares. For example, it occurred recently that
the distribution of major smart phone applications differ
across the 10 countries studied (Korea, US., India, Indone-
sia, England, Canada, Japan, France, China, and Mexico)
accordingly to cultural dimensions. Again, segregation is
lower in Asian countries that showed high preferences
for education-related applications [19]. All these results
suggest that the level of individualism is anticorrelated
with homogeneity of the society —with the increasing level

of individualism the heterogeneity of society (in various
aspects) also increases. In the case of our model for a
completely homogenous society the public opinion |m|= 1,
while for the most heterogenous one m= 0. With increas-
ing level of individualism p the public opinionm decreases,
which agrees with empirical observations [13,19].
In our opinion another interesting result is the rela-

tionship between the critical value of independence and
flexibility, pc =

1
1+αf —the critical value of independence

decreasing with increasing flexibility f . This means that in
the case of high f (non-conservative societies) consensus is
possible only in the case of low independence (high confor-
mity). On the other hand, in conservative societies, even
in the case of high independence, consensus is possible. In
modern societies the value of tradition and hence the level
of conservatism seems to be decreasing. This, according
to our model, could be one of the possible explanations
for why the status-quo situation observed by Galam [6] is
more and more encountered nowadays.
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We formulate and investigate the nonlinear q-voter model (which as a special case includes the linear voter and
the Sznajd model) on a one-dimensional lattice. We derive an analytical formula for the exit probability and show
that it agrees perfectly with Monte Carlo simulations. The puzzle that we deal with here may be summarized
by a simple question: Why does the mean-field approach give the exact formula for the exit probability in the
one-dimensional nonlinear q-voter model? To answer this question, we test several hypotheses proposed recently
for the Sznajd model, including the finite size effects, the influence of the range of interactions, and the importance
of the initial step of the evolution. On the one hand, our work is part of a trend of the current debate on the form
of the exit probability in the one-dimensional Sznajd model, but on the other hand, it concerns the much broader
problem of the nonlinear q-voter model.
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I. INTRODUCTION

The linear voter model [1], one of the most recognized in
a field of nonequilibrium phase transitions, is not only a toy
model of an Ising spin system but also a caricature of opinion
dynamics. One of the main reasons for its importance is the
fact that the linear voter model (VM) is solvable in an arbitrary
spatial dimension. However, from a social point of view it is
definitely too simplified and therefore several other models of
opinion dynamics, based on Ising spins, have been introduced
(for an excellent recent review, see [2]), e.g., the Sznajd model
[3] or the majority model [4,5]. Of course, it happens that
seemingly different models give the same results or even can
be formulated in such a way that they appear to be identical. For
example, it has been shown that the original one-dimensional
Sznajd model [3] can be rewritten as a classical voter model [6].
However, the most commonly used version, in which only
the unanimous pair changes the state of the system, differs
significantly from the VM. Nevertheless, it has been suggested
that this case could be described by a broader class of nonlinear
voter models [7,8].

Recently, a particularly interesting nonlinear variant of the
voter model, the q-voter model, has been introduced [8]. In the
proposed model q randomly picked (with possible repetitions)
neighbors influence a voter to change its opinion. If all q

neighbors agree, the voter takes their opinion; if they do not
have a unanimous opinion, a voter can still flip with probability
ε. For q = 2 and ε = 0 the model is almost identical to the
Sznajd model on a complete graph [9]. The only difference
is that in the q-voter model, repetition in choosing neighbors
is possible. However, for q = 2 and reasonably large lattice
size, this difference is negligible. In this paper we formulate
and investigate the q-voter model on a one-dimensional lattice
for ε = 0. We show that an analytical formula for the exit
probability can be derived and that several approaches (among
them the simple mean-field approach) appear to lead to the
same result. Moreover, the received analytical formula agrees
perfectly with Monte Carlo simulations. On the one hand, our
work is part of a trend of the current debate on the form of the
exit probability in the one-dimensional Sznajd model [10–13].
On the other hand, it concerns the much broader problem of
the nonlinear q-voter model. The puzzle that we deal with

here may be summarized by a simple question: Why does
the mean-field approach give the exact formula for the exit
probability in the one-dimensional nonlinear q-voter model?

We have to admit here that our question has been strongly
inspired by the initial twofold question of Galam and Martins:
Why does the mean-field approach give the exact formula for
the exit probability in the one-dimensional modified Sznajd
model, or why do the Monte Carlo simulations incorrectly
give a mean-field result? Their recent paper [13] concludes
with, Therefore the question is open for future work to settle:
either there is an explanation of why the system studied here
exhibits mean-field behavior or why different simulations of
the same system for different sizes all produced, incorrectly,
a similar mean-field result. We extend their question to the
generalized q-voter model, and show by computer simulation
which explanation of the puzzle given in [13] is more probable.

II. NONLINEAR Q-VOTER MODEL IN ONE DIMENSION

We consider a system of L spins Si = ±1 located on a
one-dimensional ring. At each elementary time step t a panel of
q neighboring spins Si,Si+1, . . . ,Si+q−1 is picked at random. If
all q neighbors are in the same state, they influence surrounding
spins; if all spins in the q-panel are not equal then nothing
changes. Two versions of the model are considered:

(1) Both sides. The q panel influences R neighbors on the
left side and the right side of the panel simultaneously—all
spins Si−R(t + �t),Si−R+1(t + �t), . . . Si−1(t + �t) and
Si+q+1(t + �t),Si+q+2(t + �t), . . . Si+q+R−1(t + �t) take
the state of the panel, i.e., → Si(t). It is easy to notice that for
R = 1 and q = 2 we deal with the original Sznajd model.

(2) Random. The q panel influences R neighbors only on
the one randomly chosen side (left or right)—with probability
1/2 spins Si−R(t + �t),Si−R+1(t + �t), . . . Si−1(t + �t) →
Si(t) or, with the same probability, Si+q+1(t + �t),Si+q+2(t +
�t), . . . Si+q+R−1(t + �t) → Si(t). In this case for R = 1 and
q = 2 we deal with the modified version of the Sznajd model,
introduced by Slanina [11]. For R = 1 and q = 1 we obtain
the original linear voter model [14].

After one elementary step time increases by �t = 1/L.
Therefore the time unit corresponds to one Monte Carlo step
(MCS).
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We have introduced both versions to be consistent with
several other papers that deal with the problem of exit
probability in the Sznajd model. In some of them the “both
sides” version is used [12], whereas others deal with the
“random” version. However, as we will show, there is no
difference between the exit probability for both versions;
therefore, either of them can be used.

III. EXIT PROBABILITY

Let us consider a finite system with an initial fraction ρ(0)
of randomly distributed spins in the +1 state. Two scenarios
for the q-voter model on a one-dimensional ring are possible:

(i) If there is no cluster of size �q, the system is dead-
locked and no evolution is possible, since only a unanimous
panel of size q is able to change the state of the system.
Obviously the number of deadlocks grows with q. For q = 1 no
configuration is deadlocked and for q = 2 the only deadlocked
configuration is the antiferromagnetic state.

(ii) If there is at least one cluster of size � q, then the system
will evolve and eventually reach the ferromagnetic state—with
probability E(ρ) the “all spins + 1” state is obtained, whereas
with probability 1 − E(ρ) the “all spins −1” state is reached.
E(ρ) is called the exit probability, and it is one of the most
important first-passage properties [14].

The exit probability for the one-dimensional Sznajd model
(which corresponds to the nonlinear voter model with q = 2)
has been calculated analytically [10,11]:

E(ρ) = ρ2

ρ2 + (1 − ρ)2
. (1)

This result agrees perfectly with Monte Carlo simulations,
which is quite puzzling since calculations were not exact but
based on the Kirkwood approximation decoupling scheme
[10,11]. Recently it has been shown that even a much less
sophisticated method, the simple mean-field approach, leads
to the same result [13]. A question arises: Why do the
approximate methods give the exact result in this case? Some
suggestions related to the importance of choosing the first pair
have appeared very recently [12,13].

In [12] the Sznajd model of range R [SM(R)] has been
studied. As usual, at each time step, a pair of nearest neighbors
Si,Si+1 is chosen at random. If Si = Si+1 then R neighbors to
the left and R neighbors to the right change value to Si . This
corresponds to the “both sides” version of the nonlinear q-voter
model (with q = 2) introduced in the preceding section.
Remarkably, in the case studied the exit probability E(ρ)
turned out to be completely independent of the range of the
interaction R. Based on this result E(ρ) was derived in the
following way: the exit probability is given by the probability
that a pair of sites in the +1 state is chosen before any pair of
sites in the −1 state [12]:

E(ρ) = ρ2
∞∑

n=0

[1 − ρ2 − (1 − ρ)2]n (2)

= ρ2

ρ2 + (1 − ρ)2
. (3)

Another idea was presented in [13]: the quasideterministic
procedure in which the only random step is the selection of the
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FIG. 1. Exit probability in the case of the “random” and “both
sides” nonlinear q-voter model on a one-dimensional ring of length
L = 100. Averaging was done over 104 samples. Results are identical
for both versions of the model.

initial pair, and then the process is deterministic. These types
of considerations have led again to the same formula for the
exit probability (1).

In this paper we show that the mean-field approach gives
the formula that agrees perfectly with Monte Carlo simulations
for an arbitrary value of q, and we also examine possible
explanations as to why approximate methods give the exact
result for a one-dimensional nonlinear q-voter model.

We start with showing by computer simulation that the exit
probabilities for both versions of the model (“random” and
“both sides”) are identical. In Fig. 1 we present results for
lattice size L = 100 and two values of q. Analogous results
were obtained earlier for the Sznajd model (i.e., q = 2) [11].
Given that both versions of the model give identical results,
we will concentrate in a later work on the “random” version.
However, we have checked all results presented in this paper
for both cases.

Now we are ready to derive an analytical formula for the
q-voter model. Let us denote by 〈N+

q (t)〉 the average value of
the number of q panels with all spins +1, and by 〈N−

q (t)〉 the
average value of the number of q panels with all spins +1.
Obviously,

〈N+
q (t)〉 = ρ(t)qL, 〈N−

q (t)〉 = [1 − ρ(t)]qL, (4)

where ρ(t) is the fraction of spins +1 at time t . Let us now
introduce the quantity

mq(t) = 〈N+
q (t)〉 − 〈N−

q (t)〉
〈N+

q (t)〉 + 〈N−
q (t)〉

= 2
ρq(t)

ρq(t) + (1 − ρ)q(t)
− 1, (5)

which for q = 1 (linear voter model) is simply average
magnetization:

m1(t) = 〈N+
1 (t)〉 − 〈N−

1 (t)〉
L

= 2ρ(t) − 1. (6)
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It is known that for the linear voter model average magnetiza-
tion is constant, i.e., m1(t) = m1(0) [14]. Knowing this, it is
very easy to derive the exit probability,

m1(∞) = E(ρ) − [1 − E(ρ)] = 2E(ρ) − 1, (7)

where we use the notation ρ(0) ≡ ρ. Because

m1(∞) = m1(0) = 2ρ − 1, (8)

we obtain

E(ρ) = ρ. (9)

Now we can generalize this reasoning assuming that

mq(∞) = mq(0). (10)

With such an assumption we obtain the result for an arbitrary
value of q:

E(ρ) = ρq

ρq + (1 − ρ)q
. (11)

Indeed substituting into (11) the value of q = 1 we obtain
the known result E(ρ) = ρ, and for q = 2 we obtain formula
(1) derived independently in four papers [10–13]. Of course,
since we did not show any proof that our assumption (10) is
valid, formula (11) can be treated as a guess. Let us start with
checking validity of formula (11) by performing Monte Carlo
simulations. In Fig. 2 we present both analytical and Monte
Carlo results for several values of q. As seen there is perfect
agreement, though the number of averaging is not very large
(104 samples).

Now we will follow the reasoning presented in [12]. We
check how the exit probability depends on the range of
interactions R. Up until now we focused only on R = 1,
but we have also provided simulations for R = 2,3,4,5, and
10. Results for R = 1 and R = 5 are presented in Fig. 3.
Analogous results were also obtained for other values of R.
It occurred that the exit probability for the q-voter model
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FIG. 2. Exit probability for the nonlinear q-voter model on a
one-dimensional ring of length L = 100. Analytical formula agrees
with the Monte Carlo results for any value of q. Averaging was done
over 104 samples.
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FIG. 3. Exit probability for nonlinear (q = 2)-voter model on a
one-dimensional ring of length L. Exit probability changes neither
with the lattice size L nor with the range of interactions. Analogous
results have been obtained in [10–12]. Analogous results are valid for
any value of q. Averaging was done over 104 samples.

is identical for any value of R. The same results have
been obtained for the Sznajd model (i.e., q = 2) in [12].
Remarkably, the size of the system also does not influence
the exit probability (see Fig. 3). The same results have been
obtained earlier for the Sznajd model [11,12]. This is quite
intriguing, since in the case of a q-voter model on a complete
graph the size of the system influences the exit probability
E(ρ) [8]. Using the fact that the range of interactions does not
change the exit probability, we can derive an analytical formula
for E(ρ) in the same way as in [12]. For R � (L − q)/2 (in the
case of “both sides”) or R � L − q (for “random”), the system
is fully ordered after the first unanimous q panel is chosen.
Therefore the exit probability is equal to the probability of
choosing a q panel of “up” spins:

E(ρ) = ρq

ρq + (1 − ρ)q
. (12)

This type of reasoning coincides, in a sense, with the idea
presented in the work of Galam and Martins [13]. They have
proposed simple quasideterministic procedure that drives the
system to the absorbing ferromagnetic state with the same
exit probability as in the Sznajd model. It their procedure
the only probabilistic step is the choice of the first pair and
further evolution is entirely deterministic. To see whether the
first choice actually affects the probability of the final state,
we performed two types of simulations. In the first step we
picked at random a q-panel of “up” spins and then the system
was evolving under the standard procedure, or we picked
at random a q-panel of “down” spins. We have denoted the
exit probability in the first case by E+(ρ), and in the second
case by E−(ρ). If the first choice does not influence the exit
probability we should obtain E+(ρ) = E−(ρ). We have plotted
in Fig. 4 the difference E+(ρ) − E−(ρ) for several values
of q. As seen, the difference grows with q, which is quite
understandable. For large values of q it is difficult to find
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FIG. 4. Difference between two exit probabilities E+(ρ) and
E−(ρ) for the lattice size L = 100 and the range of interaction R = 1.
In the case of E+(ρ) a cluster of q “up” spins has been chosen in the
first step of simulation, whereas in the case of E−(ρ) a cluster of q

“down” spins has been chosen in the first step. It is seen that the first
choice influences the exit probability. Averaging was done over 106

samples.

a unanimous q panel, especially for ρ → 0.5 (where only
small clusters are present in the system). The probability of
finding a q panel of “up” spins is equal to ρq , whereas the
probability of a q panel of “down” spins is equal to (1 − ρ)q .
This explains the shapes of the curves in Fig. 4. However,
for q = 2 the importance of the first choice is not too high,
and therefore the quasideterministic procedure proposed by
Galam and Martins [13] cannot explain the analytic formula
for E(ρ). In addition, the results concerning the importance of
the interaction’s range R should be treated rather statistically.
The fact that R does not influence the exit probability does not
mean that it is not important at all. In the other case the first
choice would determine the final state of the system, which is
obviously not true (see Figs. 4 and 5).

Although the choice of the first pair does not determine
the result in 100% of cases, the first steps of the simulation
are actually the most important. To see this, let us present
the probability ρ(t) of choosing a q panel of “up” spins as
a function of initial probability ρ for several values of t (see
Fig. 6). As we can already see, after several Monte Carlo steps
ρ(t) coincides with E(ρ). Why do the latter steps not change
the form of E(ρ)?

To understand this, we should mention here that formula
(11) is valid only for random initial conditions. If we start
from two clusters—the first cluster of spins +1 and length
ρL and the second one of spins −1 and length (1 − ρ)L—we
obtain the final state of all spins +1 with probability ρ. This
is easy to understand because the probability in such a case
of choosing a q-panel of “up” spins is equal to ρ (at least for
the infinite system size L). The same result has been obtained
for the Sznajd model in a more sophisticated way using the
Kirkwood approach [11]. Therefore, as soon as the system
orders to several domains, E(ρ) will no longer continue to
change.
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FIG. 5. Difference between two exit probabilities E+(ρ) and
E−(ρ) for several lattice sizes L and the range of interaction R = 1.
In the case of E+(ρ) a cluster of q = 2 “up” spins has been chosen in
the first step of the simulation, whereas in the case of E−(ρ) a cluster
of q = 2 “down” spins has been chosen in the first step. Results
scale trivially with the system size L. Averaging was done over 106

samples.

IV. SUMMARY

A recent work [13] pointed to the puzzle emphasizing the
mean-field character of the formula for the exit probability in
the Sznajd model obtained in [10,11]. It has been shown that
the continuous shape of the exit probability is a direct outcome
of a mean-field treatment [13]. Two possible explanations have
been given: most likely the finite size effects in the simulations,
or as a alternative, the irrelevance of the fluctuations in the
system. In this paper we have extended the puzzle to the
nonlinear q-voter model on a one-dimensional lattice. We have
proposed an analytical formula for the exit probability and
checked its validity by Monte Carlo simulations for several

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

ρ(0)

ρ(
t)

 

 

t=10−4

t=0.5
t=1
t=5
t=10
t=80

FIG. 6. Fraction of “up” spins after time t measured in the Monte
Carlo Steps.
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values of q. In particular, we have shown that neither the
range of interactions nor the size of the system influence the
exit probability. Moreover, we have checked the importance
of the initial evolution of the system, as suggested for the

Sznajd model in [12,13], to understand the proposed analytical
formula. It should be stressed that the results presented here
contain the well-known cases of the linear voter and Sznajd
models.
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We consider generalized zero-temperature Glauber dynamics under a partially synchronous updating mode
for a one-dimensional system. Using Monte Carlo simulations, we calculate the phase diagram and show that
the system exhibits phase transition between the ferromagnetic and active antiferromagnetic phases. Moreover,
we provide analytical calculations that allow us to understand the origin of the phase transition and confirm
simulation results obtained earlier for synchronous updates.
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I. INTRODUCTION

In the last decade renewed interest in Glauber dynamics
[1] has been observed, especially at zero temperature [2–14].
This is partially caused by recent experiments with so-called
single-chain magnets (for a recent review, see [15]) but is
also due to the development of the nonequilibrium statistical
physics. From this point of view one-dimensional systems at
zero temperature are especially interesting [9].

The dynamical rules of stochastic models, such as Glauber
dynamics, can be defined in terms of various update schemes,
the most important ones being parallel (synchronous) and
random-sequential (asynchronous) updates [16]. Although
Glauber dynamics was originally introduced as a sequential
updating process, interesting theoretical results can be ob-
tained also using a synchronous updating mode [4,8,10,12,
13,17]. Moreover, clear evidence of a relaxation mechanism
which involves the simultaneous reversal of spins has been
shown experimentally for magnetic chains at low temperatures
[18]. In computer simulations under the synchronous updating
mode all units of the system are updated at the same time.
However, in real systems one can expect that simultaneous
reversal of spins concerns only a part of the system. From
this point of view partially synchronous updates are the most
realistic.

We introduced such a partially synchronous updating
scheme in 2006 [12] to investigate the differences between
Glauber and Sznajd dynamics for a chain of L Ising spins.
Within such an update in each elementary time step we visit
all sites and select each of them with probability c as a
candidate to get flipped, i.e., on average, cL randomly chosen
spins are considered in a single time step [12]. Of course
c = 1 corresponds to the synchronous updating scheme and
c = 1/L corresponds to random sequential updates. Partially
synchronous updates were also used in 2007 by Radicchi
et al. [13] to investigate the Ising spin chain at zero temperature
for the Metropolis algorithm [19]. They observed, as a
function of c, a critical phase transition between two phases: a
ferromagnetic phase and the so-called active phase. A similar
phase transition had already been observed earlier for the
generalized zero-temperature Glauber dynamics by Menyhard
and Odor in the case of a synchronous updating scheme [4].

It should be noticed that the Metropolis algorithm at zero
temperature is a special case of a broader class of zero-
temperature Glauber dynamics. Within the Glauber dynamics
for Ising spins with a spin s = 1/2, in a broad sense, each

spin is flipped Si(t) → −Si(t + 1) with a rate W (δE) per unit
time, and this rate is assumed to depend only on the energy
difference implied in the flip. At zero temperature it can be
defined as [9]

W (δE) =

⎧
⎪⎨

⎪⎩

1 if δE < 0,

W0 if δE = 0,

0 if δE > 0.

(1)

The zero-temperature limits of the original Glauber dynamics
[1] and Metropolis rates [19] (two of the most popular choices)
are respectively WG

0 = 1/2 and WM
0 = 1.

Very recently, generalized Glauber dynamics defined by
(1) under a synchronous updating mode have been studied
[17]. It has been shown that the system exhibits a phase
transition for W0 = Wc = 1/2 between ferromagnetic and
antiferromagnetic phases. As an order parameter, the density
ρ of active bonds has been used:

ρ = 1

2L

L∑

i=1

(1 − σiσi+1) , (2)

where L is the number of spins and σi = ±1 is the Ising
spin variable at the ith site on the one-dimensional chain
with the periodic boundary condition. Starting from a ran-
domly disordered initial state (high-temperature situation), the
system eventually approaches one of two steady states: fully
ferromagnetic, ρst = 0, or fully antiferromagnetic, ρst = 1. In
a previous paper [17] it has been suggested that for Wc = 1/2,
in the case of synchronous updating, the system undergoes
a discontinuous phase transition between two types of order.
However, very recently, it has been claimed that the observed
phase transition is rather continuous [20]. It has been shown
that the dependence between the mean value of ρst and the
control parameter W0 scales with the system size L with
scaling exponents β = 0 and ν = 1 [20]. Moreover, the mean
exit time needed to reach the stationary state also scales with
the system size with the dynamical scaling exponent z = 2.
According to [20], both scaling laws indicate continuous phase
transition, contrary to the suggestion made in [17]. However,
it should be noticed that trivial scaling exponents β = 0 and
ν = 1/d (where d denotes spatial dimension, i.e., d = 1 in our
case) are typical for the first order phase transitions, as shown
both analytically by Fisher and Berker [21] and using Monte
Carlo simulations by Binder and Landau [22]. We will come
back to this problem in Sec. III.
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In this paper we consider zero-temperature Glauber dy-
namics defined by (1) under a partially synchronous updating
mode. We show that both parameters W0 and c are responsible
for the phase transition between ferromagnetic and antiferro-
magnetic phases. We construct the phase diagram in (c,W0)
space based on the Monte Carlo simulations. Moreover, we
provide exact analytical calculations for a simple case with
only three active bonds. Such a simple approach allows us to
understand the origin of the phase transition and shows that,
indeed, for c = 1 the critical value W0 = 1/2, which confirms
the results obtained in [17,20].

II. THE MODEL

As mentioned above, we consider a one-dimensional chain
of L Ising spins σ = ±1 with the periodic boundary condition,
described by the Hamiltonian

H = −J

L∑

i=0

σiσi+1, (3)

where J > 0, which means that we are dealing with a
ferromagnetic system. We consider the system at temperature
T = 0, and therefore we use the generalized Glauber dynamics
defined by (1).

In our computer simulations we use partially synchronous
updates, parametrized by c ∈ [1/L,1], which allows us to tune
the algorithm from a sequential (c = 1/L) to synchronous
(c = 1) updating scheme. At time t we visit all sites of the chain
and select each of them with probability c as a candidate to get
flipped. Each of the selected sites is then updated according to
the zero-temperature Glauber dynamics defined by (1). After
one step of the algorithm, the time increases as t → t + c. As
usual, one Monte Carlo step (MCS) passes when the average
number of update events equals the total number of sites L.
We investigate quench from T = ∞ to T = 0, i.e., an initial
state is disordered: at each site i there is a randomly chosen
value of spin σi = ±1, and both values σi = +1 and σi = −1
are equally probable.

III. MONTE CARLO RESULTS

In the Monte Carlo simulations, relaxation processes in
magnetic or reaction-diffusion systems are usually investigated
by measuring the time evolution of so-called active bonds
(domain walls) [16,23–25]. As already mentioned, under a
synchronous updating scheme (c = 1), the system described
by dynamical rule (1) eventually approaches one of two steady
states: fully ferromagnetic, ρst = 0, or fully antiferromagnetic,
ρst = 1. We start by clarifying the problem of the type of the
phase transition between ferromagnetic and antiferromagnetic
orders that occurs at W0 = 1/2. As written above, very
recently, it has been claimed that the observed phase transition
is continuous [20], contrary to what has been suggested in
[17]. It is true that discontinuous phase transitions are rare
in one-dimensional, even nonequilibrium systems, but there
are several lattice models that exhibit discontinuous absorbing
phase transition in one dimension [16]. There are several
phenomena attributed to discontinuous phase transitions, such
as phase coexistence, hysteresis cycles, and trivial critical

exponents, in particular, β = 0, which indicates a jump of
an order parameter. As has been shown for c = 1, there is a
phase coexistence at W0 = 1/2 [17]. Moreover, it has been
shown that critical exponents β = 0 and ν = 1 [20], which is
typical for the first order phase transitions [21,22].

To distinguish ultimately between continuous and dis-
continuous phase transitions, the hysteresis loop should be
observed. To measure the hysteresis we have decided to start
with two types of initial conditions: (1) for a disordered
ferromagnet, we disturb the ferromagnetic order by flipping
one spin: · · · ↑↑↑↑↑↓↑↑↑↑↑↑ · · ·. (2) For a disordered
antiferromagnet, we disturb the antiferromagnetic order by
flipping one spin: · · · ↑↓↑↓↑↑↑↓↑↓↑↓ · · ·.

In Fig. 1 the dependence between 〈ρst〉 and control
parameter W0 is shown for two values of c. It is clear that
the phase transition for c = 1 is qualitatively different from
the phase transition in the case of c < 1. In the latter case the
initial condition does not influence significantly the asymptotic
state, while in the case of synchronous updating a hysteresis
loop can be observed.

Now we are ready to discuss results for c < 1. As we
have already seen in Fig. 1, there is no hysteresis loop for
c < 1. This result suggests that in this case the continuous
phase transition probably occurs. In such a case we should
observe the continuous change of order parameter 〈ρst〉,
and therefore the antiferromagnetic state should not be an
absorbing state for c < 1. To check these predictions let us start
by presenting the time evolution of the average density of active
bonds 〈ρ(t)〉. From Fig. 2 we see that starting from disordered
initial conditions (〈ρ(0)〉 = 0.5), the number of active bonds
rapidly decreases to zero below some threshold value Wc, and
for W0 > Wc it increases to a certain stationary value 〈ρst〉 that
depends on both c and W0. This means that for c < 1 there
is a phase transition between the ferromagnetic order and the
so-called active phase [16]. To check if the phase transition is
indeed continuous even for c � 1 we have conducted detailed
simulations for c = 0.9,0.99,0.999,1.

In Figs. 3 and 4 results for c = 0.9 and c = 0.99 are
presented. The phase transition between ferromagnetically
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FIG. 1. The dependence between 〈ρst〉 and W0 ∈ [0,1] in the case
of synchronous updating (left) c = 1 and (right) c = 0.95 for the
lattice size L = 100 from two different initial states: open circles
denote the antiferromagnetic initial state disturbed by flipping one
spin, and stars denote the ferromagnetic initial state disturbed by
flipping one spin. It is seen that for synchronous updating (left) there
is a hysteresis loop: different steady states are reached for different
initial conditions. For c < 1 (right) there is no hysteresis loop: for
W0 < 0.6 the ferromagnetic steady state is reached independently of
the initial state, and for W0 > 0.6 there is an active steady state with
ρst > 0.
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FIG. 2. (Color online) The average density of active bonds 〈ρ〉 as
a function of time and W0 for c = 0.9. It is seen that starting from
disordered initial conditions (〈ρ(0)〉 = 0.5), the number of active
bonds rapidly decreases to zero below some threshold value of W0,
and above this threshold value it increases to a certain stationary value
〈ρst〉 that depends both on c and W0.

ordered and active phases is clearly visible, and the critical
value of W0 = W0(c), as well as the scaling exponents, can
be estimated from the finite size scaling (see Table I). For all
values of c the critical exponent ν = 1, whereas β = β(c) and
for c → 1 decreases with increasing c.

Finding precise values of critical exponents for all values
of c ∈ [0,1] is tedious but could be done. Here we were
more interested in answering whether c = 1 is the only point
at which the transition is discontinuous, and therefore we
investigated c → 1. According to our results, indeed, the
discontinuous phase transition is observed only for c = 1,
where generated clusters become compact (see Fig. 8). For
c < 1 the transition is continuous, and β increases with the
distance from the upper terminal point c = 1.

The exceptional behavior at the terminal point is due to
the symmetry between ferromagnetic and antiferromagnetic
states. Similar behavior is observed also in the Domany-Kinzel
(DK) model and is usually referred to as compact directed
percolation, which may be, in fact, misleading because
the dynamics at this special point is the same as in the
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FIG. 3. (left) The average density of active bonds in the stationary
state 〈ρst〉 as a function of W0 for c = 0.9 and several lattice sizes L.
The phase transition is clearly seen, and the critical value of W0 can be
found from the finite size scaling Wc ≈ 0.6. (right) Results from the
left panel are rescaled, showing clearly critical behavior with critical
exponents ν = 1 and β ≈ 0.4.
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FIG. 4. (left) The average density of active bonds in the stationary
state 〈ρst〉 as a function of W0 for c = 0.99 and several lattice sizes
L. The phase transition is clearly seen, and the critical value of W0

can be found from the finite size scaling Wc ≈ 0.53. (right) Results
from the left panel are rescaled, showing clearly critical behavior with
critical exponents ν = 1 and β ≈ 0.25.

(1 + 1)-dimensional Glauber-Ising model at zero temperature,
or, equivalently, the voter model [16]. It should be recalled
here that a DK model is a stochastic cellular automaton, and
therefore it evolves by parallel updates, which for our model
corresponds to c = 1, whereas the Glauber-Ising and voter
model evolves by random sequential updating (c = 1/L).
Therefore it is much easier to find direct correspondence
between DK and our model with c = 1 than between our model
and, e.g., the voter model. The DK model is characterized by
two parameters, p1 and p2; p1 is the probability that a site is
activated if only one of two neighboring sites is active, and p2

is the probability that the site is activated if both neighboring
sites are active. In our model p2 = 1 and p1 corresponds to
W0. In the DK model for p2 = 1 there is a discontinuous phase
transition at p1 = 1/2, which agrees exactly with the results
obtained for our model with c = 1.

As we have written, the average density of active bonds
in the stationary state 〈ρst〉 depends both on c and W0. Up to
now we have presented only the dependence between 〈ρst〉
and W0 for several values of c → 1. The average density
of active bonds in the stationary state 〈ρst〉 as a function
of W0 and c is presented in Fig. 5. The transition line be-
tween ferromagnetically ordered (〈ρst〉 = 0) and active phases
(〈ρst〉 > 0) is clearly visible. We have presented here results
for a relatively small lattice size L = 64, although simulations
were conducted also for larger systems, as presented in Figs. 3
and 4. Simulating smaller lattices allows us to measure the first
passage time to one of the fully ordered states, i.e., with ρ = 0
or ρ = 1. As indicated, these two states are absorbing only
for c = 1, and for c < 1 only ρ = 0 is an absorbing steady
state. However, the small system still has nonzero probability
to enter the antiferromagnetic state, although after it escapes
from this state. Therefore we have decided to measure the
mean time to enter one of the fully ordered states for the first

TABLE I. Approximate values of critical flipping probabilities
and critical exponent β for several values of c.

c Wc β ν

0.9 0.6 0.4 1.0
0.99 0.53 0.25 1.0
0.999 0.51 0.1 1.0
1 0.5 0 1.0
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FIG. 5. (Color online) The average density of active bonds in the
stationary state 〈ρst〉 as a function of W0 and c for lattice size L = 64.
Simulations were conducted for 5 × 105 MCS, and averaging was
done over 5 × 103 samples.

time 〈τ 〉 and see if any interesting behavior related to 〈τ 〉 will
be seen along the transition line.

The mean first passage time 〈τ 〉 to reach one of the two
types of fully ordered states (the so-called exit time [26]),
ferromagnetic (ρ = 0) or antiferromagnetic (ρ = 1), as a
function of W0 and c for the lattice size L = 64 is presented in
Fig. 6. It is seen that 〈τ 〉 dramatically increases approaching
the transition line, which is an expected behavior. However,
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FIG. 6. (Color online) The mean exit time 〈τ 〉 to reach one
of the two types of fully ordered states, ferromagnetic (ρ = 0) or
antiferromagnetic (ρ = 1), as a function of W0 and c for lattice
size L = 64. Simulations were conducted for 5 × 105 MCS, and
averaging was done over 5 × 103 samples. It is seen that below the
transition line the system reaches the ordered ferromagnetic state
quickly. Similarly, significantly above the transition line (large values
of c) the system quickly reaches the ordered antiferromagnetic state,
although for c < 1 this is not an absorbing state. The shape of a
triangle, in which 〈τ 〉 dramatically increases, is seen. The hole inside
the triangle indicates that none of the ordered states have been reached
in 106 Monte Carlo steps.
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FIG. 7. The average density of active bonds in the stationary state
〈ρst〉 (left) as a function of c for several values of W0 and (right) as
a function of W0 for several values of c. The difference between the
transitions with respect to c and W0 is visible.

what is even more interesting is that it increases also along
the transition line. For c → 1 the mean first passage time
〈τ 〉 is relatively short, and it increases with the distance
from the upper terminal point c = 1. Let us recall here
that the same behavior is related to a critical exponent β.
Colloquially speaking, the exit time increases with an increase
in the continuity (β) of the transition. Therefore, although the
antiferromagnetic state is not absorbing any longer for c < 1,
the mean exit time 〈τ 〉 is a useful characteristic of an observed
phase transition.

The last interesting feature connected to the phase transition
seen in Fig. 5 is a difference between the transition along axis
W0 and c. The differences between the transitions with respect
to c and W0 are visible also in Fig. 7. For c = 1 the average
density of active bonds in the stationary state 〈ρst〉 is 1 for any
W0 > 0.5, whereas for W0 = 1 the average density of active
bonds in the stationary state 〈ρst〉 depends on c. The transition
with respect to c is much more gentle than the transition with
respect to W0.

The difference between phase transitions with respect to c

and W0 can also be seen from the time evolution of active bonds
presented in Fig. 8. The phase transition for the Metropolis
algorithm, i.e., W0 = 1, which is induced by changing c,
reminds us of typical annihilation: a branching process (right
panel in Fig. 8). On the other hand, in the case of synchronous
updating the growth of the antiferromagnetic domain from
a single active bond can be observed (left panel in Fig. 8).
In this case a kind of phase coexistence can be observed:
ferromagnetic and antiferromagnetic clusters are present in
the system.

FIG. 8. Time evolution of active bonds near the phase transition
(left) in the case of synchronous updating c = 1 induced by W0 and
(right) in the case of the Metropolis algorithm W0 = 1 induced by c.
In the initial state only one bond was active.
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IV. THE ORIGIN OF THE PHASE TRANSITION

We have shown in the previous section that a one-
dimensional system of Ising spins with generalized Glauber
dynamics under partially synchronous updates exhibits well-
defined phase transition between a stable ferromagnetic phase
and an active phase. Moreover, it has been shown that for
the synchronous updating scheme (c = 1) the system exhibits
phase transition for W0 = 1/2 between two absorbing stable
states: ferromagnetically and antiferromagnetically ordered
[17,20]. Although some mean field calculation has been
provided [17], the origin of the investigated phase transition
has not yet been.

The model considered here belongs to a broad class
of so-called branching-annihilating random walks [16]; that
is, three processes are possible: diffusion, branching, and
annihilation of active bonds. It should also be mentioned that
these processes conserve the number of active bonds modulo
2, which is usually called parity conserving. However, it has
been shown that the conservation of the parity is not very
relevant [16,27].

Let us first consider the simplest case, a chain of length L

with a single active bond, i.e., · · · ↑↑↓↓ · · ·, at time t . Since
we deal with a zero-temperature situation, changes are possible
only on the domain wall (active bond). Therefore at time t + c

the single-bond system can evolve to

· · · ↑⇓⇑↓ · · · with probability c2W 2
0 PL−2,

· · · ↑↑⇑↓ · · · with probability [c(1 − c) + c2(1 − W0)]PL−2,

· · · ↑⇓↓↓ · · · with probability [c(1 − c) + c2(1 − W0)]PL−2,

· · · ↑↑↓↓ · · · with probability [(1 − c)2 + c2(1 − W0)2]PL−2,

where ⇑ and ⇓ denote spins that were flipped and

PL−2 =
L−2∑

k=0

(L − 2)!

k!(L − 2 − k)!
ck(1 − c)L−2−k (4)

denotes the sum of probabilities of all possible choices of
remaining L − 2 spins.

Clearly, only the first process, which occurs with the
probability Pb = c2W 2

0 PL−2, leads to the growth of antifer-
romagnetic domains. The remaining three situations do not
change the number of active bonds since the annihilation of
a single active bond is impossible. Therefore the single-bond
system can either remain unchanged or evolve to the system
that consists of three neighboring active bonds, · · · ↑↑↓↑↓↓
· · ·. Analyzing all possible transitions in such a system (see
Table II), we can calculate the probability of annihilation (Pa),
branching (Pb), and diffusion (Pd ):

Pa = c4W 2
0 − c2(1 + 2W0) + 2c, Pb = c4W 2

0 ,

Pd = −c4W0(2 + W0) − 2c3
(
W 2

0 − 2W0 − 1
)

+ c2
(
W 2

0 − 4
) + 2c. (5)

Of course there is also the possibility of no change in the
system:

Pno = 1 − (Pa + Pb + Pd ). (6)

TABLE II. All possible outcome configurations from initial state
↑↑↓↑↓↓. Here ⇑ and ⇓ denote spins that were flipped. The constant
factor PL−4, which multiplies the right sides of the Eqs. (5), has been
omitted to simplify notation. The initial state has three bonds.

After flip Bonds Probability

↑↑⇑↑↓↓ 1 c(1 − c)3 + c3(1 − W0)2(1 − c)
+2c2(1 − c)2(1 − W0)

↑↑↓⇓↓↓ 1 c(1 − c)3 + c3(1 − W0)2(1 − c)
+2c2(1 − c)2(1 − W0)

↑⇓↓↑↓↓ 3 cW0(1 − c)3 + c2W0(1 − c)2(1 − W0)
↑↑↓↑⇑↓ 3 cW0(1 − c)3 + c2W0(1 − c)2(1 − W0)
↑⇓⇑↑↓↓ 3 c2W0(1 − c)2 + c3W0(1 − c)(1 − W0)
↑↑↓⇓⇑↓ 3 c2W0(1 − c)2 + c3W0(1 − c)(1 − W0)
↑⇓↓⇓↓↓ 1 c2W0(1 − c)2 + c3W0(1 − c)(1 − W0)
↑↑⇑↑⇑↓ 1 c2W0(1 − c)2 + c3W0(1 − c)(1 − W0)
↑↑⇑⇓↓↓ 1 c2(1 − c)2 + c4(1 − W0)2

↑⇓↓↑⇑↓ 3 c2W 2
0 (1 − c)2

↑⇓⇑⇓↓↓ 3 c3W0(1 − c) + c4W0(1 − W0)
↑↑⇑⇓⇑↓ 3 c3W0(1 − c) + c4W0(1 − W0)
↑⇓↓⇓⇑↓ 3 c3W 2

0 (1 − c)
↑⇓⇑↑⇑↓ 3 c3W 2

0 (1 − c)
↑⇓⇑⇓⇑↓ 5 c4W 2

0

The constant factor

PL−4 =
L−4∑

k=0

(L − 4)!

k!(L − 4 − k)!
ck(1 − c)L−4−k, (7)

which multiplies the right sides of the above equations, has
been omitted to simplify the notation.

Now we can ask what the dependence is between parame-
ters c and W0 for which annihilation and branching are equally
probable:

Pa = Pb → −c2(1 + 2W0) + 2c = 0. (8)

This means that annihilation and branching are equally
probable for c = 0 or

c = 2

1 + 2W0
. (9)

From Eq. (9) we find that for synchronous updating, i.e., c = 1,
the critical value of W0 = 1/2, which confirms results obtained
recently in [17,20]. Moreover, for W0 = 1 we obtain the critical
value of c = 2/3, which is also very close to the value obtained
from Monte Carlo simulations (see Fig. 5). Therefore it seems
that the phase transition between the ferromagnetic phase and
antiferromagnetic active phase appears when annihilation and
branching are equally probable.

Let us now present the dependence between probabilities
(5) and parameter c for a given value of W0. We focus on the
Metropolis algorithm, i.e., W0 = 1 (the case considered also
in [13]). Results are presented in Fig. 9. Several interesting
features of our system are visible.

(1) The value of c for which annihilation and branching
are equally probable, i.e., Pa = Pb, agrees quite well with the
critical value of c obtained from Monte Carlo simulations.

(2) The probability of diffusion has a maximum for the
same value of c, for which Pa = Pb.
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FIG. 9. (Color online) Probabilities of annihilation (Pa), branch-
ing (Pb), diffusion (Pd ), and no change (Pno) as a function of updating
scheme c for W0 = 1.

(3) The probability of annihilation grows with c to a certain
value, c ∼ 0.4, and for c > 0.4 it decays. Simultaneously with
decreasing Pa , the probability of branching grows, although
it is still smaller then annihilation for c < 2/3. Therefore,
one expects that eventually the system will still reach a
ferromagnetic state, although branching of active bonds should
be visible during time evolution. It should be mentioned here
that in [13] the case of W0 = 1 has also been studied, and
the authors claimed that a system with partially synchronous
updates exhibits phase transition for c ∼ 0.4. However, our
results (both types of Monte Carlo simulations and the
simple analytical approach) suggest that the value of c ∼ 0.4
corresponds merely to the situation in which the probability of
annihilation starts to decay and branching appears.

V. SUMMARY

In this paper we have investigated one-dimensional systems
of Ising spins driven by the generalized zero-temperature
Glauber dynamics with a partially synchronous updating
mode (tuned from sequential to synchronous by parameter
c). It has been shown that for the synchronous updating
mode, which corresponds to c = 1, there is a discontinuous
phase transition between two ordered phases (ferromagnetic
and antiferromagnetic). Three signatures of a discontinuous
phase transition have been found in this case: (1) jump of
an order parameter (β = 0), (2) phase coexistence, and (3)
hysteresis cycles. Similar behavior has been observed in a
one-dimensional Glauber-Ising model at zero temperature in
a magnetic field, which is also known as compact directed
percolation [16]. On the other hand, finding the precise values
of critical exponents for c < 1 turned out to not be so easy a
task. Nevertheless, the results obtained in this paper suggest
that for any value of c < 1 there is a continuous order-disorder
transition (between the ferromagnetic and so-called active
phases). Using the finite scaling technique, we have shown
that the critical exponent β has no single value along the
transition line, i.e., β = β(c), and it increases with the distance

from the upper terminal point c = 1, at least for c → 1.
Finding the dependence between critical exponent β and c

along the whole line, i.e., for c ∈ [0,1], is quite tedious.
Moreover, we were more interested in answering the question
of whether c = 1 is the only point at which the transition is
discontinuous and what the type of transition is for c < 1.
Therefore we investigated c → 1. The numerical findings of
critical exponents are often difficult, and one should be careful
when drawing conclusions only from simulations. However, it
seems that the discontinuous phase transition for c = 1, similar
to the Domany-Kinzel model [16,28], is exceptional due to an
additional symmetry between active and inactive bonds.

Another interesting problem that could be investigated, but
was not the subject of this paper, is the phase transition with
respect to c for a given W0. We have presented the general
dependence between an order parameter 〈ρst〉 and parameters
W0 and c. We have also discussed briefly the differences
between transitions with respect to W0 and c. However, a
detailed analysis has not been provided. The only results
connected to this issue were obtained for W0 = 1 in [13].
In this paper it has been shown that the phase transition can
also be observed for any other value of W0 > 0.5. It would be
interesting to investigate this problem more precisely in the
future.

To understand the origin of the phase transition we have pro-
vided a simple analytical approach and showed that transition
occurs when branching and annihilation are equally probable,
which is fulfilled for W0 = (2 − c)/2c. Again, this confirms
results from [17,20] since for c = 1,W0 = 1/2, which was
obtained earlier by Monte Carlo simulations and a simple mean
field approach.

To conclude this work we would like to highlight one
important issue that justifies the subject of the paper. As
mentioned in the Introduction, clear evidence of a relaxation
mechanism which involves the simultaneous reversal of spins
has been shown experimentally for magnetic chains at low
temperatures [18]. However, in [18] it has been suggested
that the probability of simultaneous reversal of L spins scales
as qL (with certain parameter q < 1), which is not the same
kind of macroscopic reversal which is assumed in this paper.
Moreover, in [18] the simultaneous reversal of spins in a single
segment has been considered, which is also very different from
our approach. To be honest, we were not able to find any other
example of a physical experiment that shows an evidence of
simultaneous changes. One should also remember that Glauber
dynamics, which has been introduced as a sequential updating
process, satisfies the detailed balance condition and therefore
ensures the existence of an equilibrium. There is thus a natural
question of whether the model with partially simultaneous
updating is merely another mathematical toy. Let us stress
here that we strongly believe in toy models. They help to
explore new regions and develop new fields even without
meeting any reality. On the other hand, we understand the
skepticism of people who would like to have even the smallest
hope that the model would turn into something useful. We
are not sure if partially synchronous or fully synchronous
updating can describe a real physical experiment. On the other
hand, the problem of updating methods is widely discussed
in a recent work on cellular automata, Boolean networks,
neural networks, and the so-called agent-based modeling in
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ecology and sociology [29–32]. It has been shown that the
updating scheme can have an enormous influence on the
model output [30]. It is also suggested that “the updating
effects will be particularly marked in models with increasing
interaction complexity such as models of interaction between
many trophic levels.” In this paper we show that the effect of
the type of updating is clearly visible even within extremely
simple model, which might be instructive, taking into account
that many models of opinion dynamics are inspired by the Ising
model [33]. In a world of agent-based modeling, asynchronous
and synchronous updating are treated as two contrasting

methods [33], and we see no reason why either of these two
would be better than partially synchronous updating. As stated
in [13], “Probably neither a completely synchronous nor a
random asynchronous update is realistic for natural systems.”

ACKNOWLEDGMENTS

This work was supported by funds from the National Sci-
ence Centre (NCN) through Grant No. 2011/01/B/ST3/00727.
We thank Prof. Joseph Indekeu for the fruitful discussion on
the first order phase transitions.

[1] R. J. Glauber, J. Math. Phys. 4, 294 (1963).
[2] A. Lipowski, Phys. A 268, 6 (1999).
[3] C. M. Newman and D. L. Stein, Phys. A 279, 159 (2000).
[4] N. Menyhard and G. Odor, Braz. J. Phys. 30, 113 (2000).
[5] V. Spirin, P. L. Krapivsky, and S. Redner, Phys. Rev. E 63,

036118 (2001).
[6] V. Spirin, P. L. Krapivsky, and S. Redner, Phys. Rev. E 65,

016119 (2001).
[7] G. De Smedt, C. Godreche, and J. M. Luck, Eur. Phys. J. B 27,

363 (2002).
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We study a nonlinear q-voter model with stochastic driving on a complete graph. We investigate two types of
stochasticity that, using the language of social sciences, can be interpreted as different kinds of nonconformity.
From a social point of view, it is very important to distinguish between two types nonconformity, so-called
anticonformity and independence. A majority of work has suggested that these social differences may be
completely irrelevant in terms of microscopic modeling that uses tools of statistical physics and that both types
of nonconformity play the role of so-called social temperature. In this paper we clarify the concept of social
temperature and show that different types of noise may lead to qualitatively different emergent properties. In
particular, we show that in the model with anticonformity the critical value of noise increases with parameter q,
whereas in the model with independence the critical value of noise decreases with q. Moreover, in the model with
anticonformity the phase transition is continuous for any value of q, whereas in the model with independence the
transition is continuous for q � 5 and discontinuous for q > 5.

DOI: 10.1103/PhysRevE.86.011105 PACS number(s): 64.60.Ht, 05.70.Ln

I. INTRODUCTION

Recently, various microscopic models of opinion dynamics
have been proposed and widely studied by physicists and social
scientists (for reviews see [1–4]). In the world of social studies
this kind of modeling is known as agent-based modeling
(ABM). It has been noted recently that despite the power of
ABM in modeling complex social phenomena, widespread
acceptance in the highest-level economic and social journals
has been slow due to the lack of commonly accepted standards
of how to use ABM rigorously [2,5]. As has been pointed
out by Macy and Willer [3], one of the main problems in the
field of social simulations is that there has been “little effort to
provide analysis of how results differ depending on the model
designs.”

A similar problem is visible in a field of sociophysics. For
example, to study opinion dynamics under conformity (one of
the major paradigms of social response), a whole large class of
models based on binary opinions S = ±1 has been proposed,
among them the voter model [6,7], majority rule [8,9], the
Sznajd model [10], and nonlinear voter models [11,12]. For all
these models the ferromagnetic state is an attractor [1]. On one
hand, this is expected since the conformity is the only factor
influencing opinion dynamics in these models. On the other
hand, this is obviously not realistic for real social systems.
To make models of opinion dynamics more realistic several
modifications has been proposed, among them the introduction
of contrarians [13,14], inflexibles [15], and zealots [16]. From
the social point of view all these modifications describe another
major paradigm of social response—so-called nonconformity
[17]. There are two widely recognized types of nonconformity:
anticonformity and independence. From a social point of view,
it is very important to distinguish between these two types of
nonconformity [17,18]. The term “independence” implies the
failure of attempted group influence. Independent individuals
evaluate situations independently of the group norm. From this
point of view both zealots, introduced by Mobilia [16], as well
as inflexibles, introduced by Galam [15], describe a particular
type of independent behavior. In contrast, anticonformists are

similar to conformers in the sense that both take cognizance
of the group norm—conformers agree with the norm, while
anticonformers disagree. Therefore, the contrarians introduced
by Galam in [13] or the stochastic driving proposed by de la
Lama et al. [14] describe anticonformity.

Although differences between two types of nonconformity
are very important for social scientists, the results obtained
so far indicate that differences may be irrelevant from the
physical point of view. Both contrarian and independent
behaviors play the role of social temperature, which induces an
order-disorder transition [13,14,19,20]. However, addressing
the problem posed by Macy and Willer [3] we would like
to check rigorously the differences between these two types
of nonconformity under the framework of a possibly general
model of opinion dynamics. In a class of models with binary
opinions such a general model has been recently introduced in
Ref. [12] under the name of the “q-voter model.” As special
cases this model consists of both the linear voter model as
well as the Sznajd model. In this paper we investigate this
model in the presence of different types of nonconformity and
check whether results for anticonformity and independence
are qualitatively the same, according to our first expectation.
It should be mentioned that another general class of opinion
dynamics, known as majority rule [8,9], would also be a good
candidate to test the differences between these two types
of nonconformity. However, introducing a general type of
independence is not so straightforward in this case.

The paper is organized as follows. In the next section we
introduce the generalized model with two types of noncon-
formity on a complete graph (topology, which is particularly
convenient for analytical calculations). In Sec. III we analyze
the time evolution of the system described by the master
equation. In this section we will already see differences
between models with anticonformity and independence, in
contrast to our first prediction. In Sec. IV we calculate
analytically the stationary values of public opinion in a case
of an infinite system. The results presented in Secs. III and
IV indicate clearly a phase transition between phases with
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and without majority. Therefore in Sec. V we find the phase
diagram and calculate the transition point as a function of
the model’s parameters. The results presented in this section
show clearly important qualitative differences between the two
types of nonconformity. In Sec. VI we apply the approach that
has been used to study nonequilibrium systems with two (Z2)
symmetric absorbing states in Refs. [21,22] to understand more
deeply these differences and in particularly the origin of the
discontinuous phase transition in the case of nonconformity.
We conclude the paper in the last section.

II. MODEL

We consider a set of N individuals on a complete graph,
which are described by the binary variables S = ±1. At each
elementary time step q individuals S1, . . . ,Sq (denoted by ↑
for Si = 1 or ↓ for Si = −1, where i = 1, . . . ,q) are picked
at random and form a group of influence, called a q lobby.
Then the next individual (⇑ or ⇓) that the group can influence,
called the voter, is randomly chosen.

The part of a model described above is a special case of
the nonlinear q-voter model introduced in Ref. [12]. In the
original q-voter model, if all q individuals are in the same
state, the voter takes their opinion; if they do not have a
unanimous opinion, still a voter can flip with probability
ε. For q = 2 and ε = 0 the model is almost identical with
Sznajd’s model on a complete graph [23]. The only difference
is that in the q-voter model repetitions in choosing neighbors
are possible. In Ref. [24] the q-voter model with ε = 0 and
without repetition has been considered on a one-dimensional
lattice. In this paper we also deal with a q-voter model with
ε = 0 and without repetition, but additionally we introduce a
certain type of noise to the model. The original voter model
describes only conformity, whereas noise is introduced to
describe nonconformity.

In our model conformity and anticonformity take place
only if the q lobby is homogeneous i.e., all q individuals
are in the same state. In the case of conformity the voter
takes the same decision as the q lobby (like in the original
q-voter model), whereas in a case of anticonformity the voter
takes the opposite opinion to that of the group. In the case
of independent behavior, the voter does not follow the group
but acts independently—with probability 1/2 it flips to the
opposite direction, i.e., Sq+1 → −Sq+1.

To check the differences in results that are caused by
different types of nonconformity we consider three versions
of the model:

Anticonformity I: With probability p1 the voter behaves
like a conformist and with p2 like an anticonformist. This
type of anticonformity has been investigated in a case of the
Sznajd model on a complete graph in Ref. [20]. Because results
depend only on the ratio p = p1/p2, in this paper we consider
p1 = 1 and p2 = p. In this version of the model the following
changes are possible:

↑↑ . . . ↑︸ ︷︷ ︸
q

⇓ p1=1−→ ↑↑ . . . ↑︸ ︷︷ ︸
q

⇑ ,

↓↓ . . . ↓︸ ︷︷ ︸
q

⇑ p1=1−→ ↓↓ . . . ↓︸ ︷︷ ︸
q

⇓ ,

↑↑ . . . ↑︸ ︷︷ ︸
q

⇑ p2=p−→ ↑↑ . . . ↑︸ ︷︷ ︸
q

⇓ ,

↓↓ . . . ↓︸ ︷︷ ︸
q

⇓ p2=p−→ ↓↓ . . . ↓︸ ︷︷ ︸
q

⇑ . (1)

In other cases nothing changes.
Anticonformity II: With probability p the voter behaves

like an anticonformist and with 1 − p like a conformist.
This type of anticonformity has been investigated in a case
of the Sznajd model on several networks in Ref. [14] and
results were qualitatively the same as in Ref. [20]. Indeed
it is quite easy to notice that anticonformity II is a special
case of anticonformity I. However, for the record we consider
here both cases and show that indeed differences are only
quantitative. In this case the following changes are possible:

↑↑ . . . ↑︸ ︷︷ ︸
q

⇓ 1−p−→ ↑↑ . . . ↑︸ ︷︷ ︸
q

⇑ ,

↓↓ . . . ↓︸ ︷︷ ︸
q

⇑ 1−p−→ ↓↓ . . . ↓︸ ︷︷ ︸
q

⇓ ,

↑↑ . . . ↑︸ ︷︷ ︸
q

⇑ p−→ ↑↑ . . . ↑︸ ︷︷ ︸
q

⇓ ,

↓↓ . . . ↓︸ ︷︷ ︸
q

⇓ p−→ ↓↓ . . . ↓︸ ︷︷ ︸
q

⇑ . (2)

In other cases nothing changes.
Independence: With probability p the voter behaves in-

dependently and with 1 − p like a conformist. In the case
of independent behavior an individual changes to the opposite
state with probability 1/2. The following changes are possible:

↑↑ . . . ↑︸ ︷︷ ︸
q

⇓ 1−p−→ ↑↑ . . . ↑︸ ︷︷ ︸
q

⇑ ,

↓↓ . . . ↓︸ ︷︷ ︸
q

⇑ 1−p−→ ↓↓ . . . ↓︸ ︷︷ ︸
q

⇓ ,

. . .︸︷︷︸
q

⇓ p/2−→ . . .︸︷︷︸
q

⇑ ,

. . .︸︷︷︸
q

⇑ p/2−→ . . .︸︷︷︸
q

⇓ . (3)

In other cases nothing changes.

III. TIME EVOLUTION

In a single time step �t , three events are possible: the
number of “up” spins, N↑, increases, decreases by 1, or
remains constant. Of course, all three events can be rewritten
for the number of “down” spins N↓ as N↑ + N↓ = N . Also the
concentration c = N↑/N of spins up increases or decreases by
�N = 1/N or remains constant:

γ +(c) = Prob{c → c + �N },
γ −(c) = Prob{c → c − �N }, (4)

γ 0(c) = Prob{c → c} = 1 − γ +(c) − γ −(c).
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The time evolution of the probability density function of c

is given by the master equation [7]

ρ(c,t + �t ) = γ +(c − �N )ρ(c − �N,t)

+ γ −(c + �N )ρ(c + �N,t)

+ [1 − γ +(c) − γ −(c)]ρ(c,t). (5)

Of course, an analogous formula can be written for N↑. The
exact forms of the probabilities γ +(c) = γ +(N↑) = γ + and
γ −(c) = γ −(N↑) = γ − depend on the version of the model;
for a finite system they are the following: For anticonformity I,

γ + = N↓
∏q

i=1(N↑ − i + 1) + p
∏q+1

i=1 (N↓ − i + 1)
∏q+1

i=1 (N − i + 1)
,

(6)

γ − = N↑
∏q

i=1(N↓ − i + 1) + p
∏q+1

i=1 (N↑ − i + 1)
∏q+1

i=1 (N − i + 1)
;

for anticonformity II,

γ + = (1 − p)N↓
∏q

i=1(N↑ − i + 1) + p
∏q+1

i=1 (N↓ − i + 1)
∏q+1

i=1 (N − i + 1)
,

γ − = (1 − p)N↑
∏q

i=1(N↓ − i + 1) + p
∏q+1

i=1 (N↑ − i + 1)
∏q+1

i=1 (N − i + 1)
;

(7)

and for independence,

γ + = (1 − p)N↓
∏q

i=1(N↑ − i + 1)
∏q+1

i=1 (N − i + 1)
+ pN↓

2N
,

(8)

γ − = (1 − p)N↑
∏q

i=1(N↓ − i + 1)
∏q+1

i=1 (N − i + 1)
+ pN↑

2N
.

For an infinite system the above formulas take much simpler
forms: For anticonformity I,

γ + = (1 − c)cq + p(1 − c)q+1,
(9)

γ − = c(1 − c)q + pcq+1;

for anticonformity II,

γ + = (1 − p)(1 − c)cq + p(1 − c)q+1,
(10)

γ − = (1 − p)c(1 − c)q + pcq+1;

and for independence,

γ + = (1 − p)(1 − c)cq + p(1 − c)/2,
(11)

γ − = (1 − p)c(1 − c)q + pc/2.

Solving analytically master equation (5) is not an easy
task, but exact formulas for γ + and γ − allow for a numerical
solution of the equation. For an arbitrary initial state the system
reaches the same steady state. In the case of an infinite system
the probability density function is a sum of delta functions,
ρst (c) = δ(c − c1) + δ(c − c2) + · · · + δ(c − ck), whereas for
a finite system ρst (c) has maxima (peaks) for the c = cj j =
1, . . . ,k, which are getting higher and more narrow with the
system size, approaching the deltas for the infinite system.
The number of peaks, k, and values c1, . . . ,ck depend on the
version of the model, as well as on the model’s parameters p

and q.

Examples of the stationary probability density functions for
the q lobby of size q = 7 and a system size of N = 200 are
presented in Figs. 1 (anticonformity I) and 2 (nonconformity).
As seen from Figs. 1 and 2, for small values of noise p (whether
the noise is introduced as independence or anticonformity) the
system is polarized, whereas for large values of p there is no
majority in the system. However, the transition from the phase
with majority to the phase without majority is very different
for each type of noise. In the case with anticonformity we
observe a continuous phase transition for arbitrary values of q,
whereas in the case with nonconformity there is a continuous
phase transition for q � 5 and a discontinuous phase transition
for q > 5.

In the case with anticonformity two states with majority,
represented by two equally high peaks, are stable below the
critical value of p∗. As p < p∗ increases the two peaks
approach each other and eventually for p = p∗ they form a
single peak, which is a typical picture for a continuous phase
transition (see Fig. 1) [25,26]. In the case with independence
this picture is valid only for the lobby q � 5. For q > 5
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FIG. 1. Stationary probability density function of the concentra-
tion of up spins for the q-voter model with anticonformity I for a
system of N = 200 individuals and a lobby size of q = 7. As seen
for small values of anticonformity p the system is polarized, but
for large values of p there is no majority in the system. For p = 0
(the case without anticonformity) the system consists of all spins up
or all spins down. With increasing p maxima are getting lower and
approaching each other. Eventually they form a single maximum.
This is typical behavior for a continuous phase transition. The critical
value of p can be found analytically (see Sec. V) and depends on q.
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FIG. 2. Stationary probability density function of the concentra-
tion of up spins for the q-voter model with independence for a system
of N = 200 individuals and a lobby size of q = 7. As seen for small
values of independence p the system is polarized, but for large values
of p there is no majority in the system. For p = 0 (the case without
independence) the system consists of all spins up or all spins down.
For larger values of p the third maximum appears at c = 1/2 (no
majority). This maximum increases with p while the remaining two
maxima are decreasing. Above a certain value of p there is only one
maximum for c = 1/2. This is typical behavior for a discontinuous
phase transition for which we can observe the phase coexistence.

the transition is very different. Again for small values of
p there are two peaks but with increasing p they are not
approaching each other. Instead, for p = p∗

1 the third peak
appears at c = 1/2 (see Fig. 2). The third peak is initially lower
than the remaining two peaks, which means that it represents
a metastable state. As p > p∗

1 increases the third peak grows
and for p = p∗

2 all three peaks have the same height. For
p > p∗

2 the central peak dominates over the other two, which
means that the state c = 1/2 is stable and the remaining two
are metastable. Finally, for p = p∗

3 the side peaks disappear
and only the center peak remains. This is a typical picture
for a discontinuous phase transition, which takes place at
p = p∗

2 [25,26]. Two values of the independence parameter,
p = p∗

1 and p = p∗
3 , demarcate the existence of metastability

(spinodal lines) [27,28]. Values p∗
1 , p∗

2 , and p∗
3 depend on

the size of the lobby q, which will be shown exactly in
Sec. V.

Before moving on to the analytical results for the infinite
system and determining the points of phase transitions, let us

0 2 4 6 8 10

x 10
5
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0.5

1

time (MCS)

c

FIG. 3. (Color online) Time evolution of the concentration of up
spins for the model with anticonformity with lobby q = 7 and level of
anticonformity p = 0.5. The system size is N = 200. Spontaneous
transitions between two stationary states are visible.

present the time evolution. We stop for a moment to focus
on the case of a finite system. Having exact formulas for
transition probabilities γ + and γ − we are able not only to
calculate numerically the stationary density function ρst (c)
but also to generate sample trajectories of concentration
(Figs. 3–6). In the case of a finite system spontaneous
transitions between states are possible. In the case with an-
ticonformity transitions between two states, which correspond
to peaks in the probability density function ρst (c), are possible
below a critical value of p. Because both peaks are equally
high the system spends the same amount of time on average
in each state.

This is also true in the case with independence and q � 5
(see Fig. 4). However, as we have already written for q > 5
there is a discontinuous phase transition between states with
and without majority and for p ∈ (p∗

1,p
∗
3) there are three

possible states. Therefore for q > 5 we expect spontaneous
transitions among three states.

Such transitions are indeed observed. For p ∈ (p∗
1,p

∗
2) the

state with majority is stable and the state without majority is
metastable. Therefore, the system spends more time in states
with majority. For p ∈ (p∗

2,p
∗
3) the situation is exactly the

opposite—the state without majority is stable. At a transition
point p = p∗

2 all three states are stable and the system spends
the same time on average in each of three states (see Figs. 5
and 6).

IV. STATIONARY CONCENTRATION

In the stationary state we expect that the probability of
growth, γ +, should be equal to the probability of loss, γ −, and
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FIG. 4. (Color online) Time evolution of the concentration of up
spins for the model with independence with lobby q = 5 and level of
anticonformity p = 0.175. The system size is N = 200. Spontaneous
transitions between two stationary states are visible.
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FIG. 5. (Color online) Time evolution of the concentration of up
spins for the model with independence with lobby q = 7 and level
of anticonformity p = 0.111 (where for this value all three states are
stable). The system size is N = 200. Spontaneous transitions among
three stationary states are visible.

therefore

F (c,q,p) = γ +(c,q,p) − γ −(c,q,p) = 0, (12)

where F (c,q,p) can be treated as an effective force, γ + drives
the system to the state spins up, and γ − drives them to spins
down. Therefore we can easily calculate also an effective
potential:

V (c,q,p) = −
∫

F (c,q,p) dc. (13)

To calculate stationary values of concentration we simply solve
the equation

F (c,q,p) = 0, (14)

or, alternatively, find the minima of the potential V . Although
the first possibility is more straightforward, we will see in the
next section that knowing the form of the potential will help
us to calculate the transition points.

The exact forms of the force F and the potential V for an
infinite system are as follows: For anticonformity I,

F = (1 − c)cq + p(1 − c)q+1 − c(1 − c)q − pcq+1,

V = − 1

q + 1
(cq+1 + (1 − c)q+1)

+ p + 1

q + 2
(cq+2 + (1 − c)q+2); (15)

for anticonformity II,

F = (1 − p)(1 − c)cq + p(1 − c)q+1

− (1 − p)c(1 − c)q − pcq+1,
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FIG. 6. (Color online) Time evolution of the concentration of
up spins for the model with independence with lobby q = 9 and
level of anticonformity p = 0.0685. The system size is N = 200.
Spontaneous transitions among three stationary states are visible.

V = −1 − p

q + 1
(cq+1 + (1 − c)q+1)

+ 1

q + 2
(cq+2 + (1 − c)q+2); (16)

and for independence,

F = (1 − p)(1 − c)cq + p(1 − c)

2

− (1 − p)c(1 − c)q − pc

2
,

(17)

V = −1 − p

q + 1
(cq+1 + (1 − c)q+1)

+ 1 − p

q + 2
(cq+2 + (1 − c)q+2) − p

2
c(1 − c).

Solving analytically Eq. (14), i.e., finding cst as a function
of p for an arbitrary value of q, is impossible, but we can
easily derive the opposite relations satisfying Eq. (14): For
anticonformity I,

p = cst (1 − cst )q − (1 − cst )c
q
st

(1 − cst )q+1 − c
q+1
st

, (18)

for anticonformity II,

p = cst (1 − cst )q − (1 − cst )c
q
st

(1 − cst )q+1 + cst (1 − cst )q − (1 − cst )c
q
st − c

q+1
st

, (19)

and for independence,

p = cst (1 − cst )q − (1 − cst )c
q
st

(1 − cst )/2 + cst (1 − cst )q − (1 − cst )c
q
st − cst /2

. (20)

We have used the above formulas to plot the dependence
between steady value of concentration cst and the level of noise
p for several values of q (see Fig. 7). Although only the relation
p(cst ) is calculated analytically and the opposite relation is
unknown, we plot cst (p) by simply rotating the figure with
the relation p(cst ). Clear differences between the two types of
noise are visible—in a case with anticonformity the transition
value of p increases with q and in a case with independence
it decreases with p. Moreover, the type of transition is the
same for arbitrary values of q in the case with anticonformity,
whereas in the case with independence the transition between
phases with and without majority changes its character for
q > 5.

It should be also noticed that formulas (18)–(20) have been
obtained from condition (14); i.e., they correspond to extreme
values of potentials (15)–(17). However, only the minima of
the potential correspond to the stable value of concentration.
Therefore, in Figs. 7 and 8 we have denoted unstable values
that correspond to the maxima of potentials by dotted lines.
Moreover, we have presented the flow diagram for chosen
values of q to show precisely which state is reached from
given initial conditions. Particularly interesting behavior is
related with independence (bottom panel in Fig. 8). Starting
from two different initial concentrations disorder or order can
be reached as a steady state (hysteresis).

In the next section we derive analytically transition
points using knowledge of the effective potentials V in
Eqs. (15)–(17).
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FIG. 7. Phase diagram for the models with anticonformity (top
panel) and independence (bottom panel). Dependencies between
steady values of concentration cst and the level of noise p for several
values of q are plotted using formulas (18)–(20). Although only
relation p(cst ) is calculated analytically and the opposite relation is
unknown, we plot cst (p) simply by rotating the figure. Dotted lines
have been used to mark instability. Although both types of line (solid
and dotted) are obtained from Eq. (14), i.e., correspond to extreme
values of potentials (15) and (17), only solid lines denotes stable
values, i.e., correspond to the minima of potentials (see also Fig. 8).
A clear difference between two types of noise is visible—in a case
with anticonformity the transition value of p increases with q and
in a case with independence it decreases with p. Moreover, the type
of transition is the same for arbitrary values of q in a case with
anticonformity, whereas in a case with independence the transition
between phases with and without majority changes its character for
q > 5.

V. PHASE TRANSITIONS

As already noticed there is a continuous phase transition for
the model with anticonformity I and II for arbitrary values of
q. Below a critical value p = p∗(q) the effective potential
has two minima and above the critical value it has only
one. Consequently, the stationary probability density function
ρst (c) for p < p∗ has two maxima and for p > p∗ only one at
c = 1/2 (i.e., there is no majority in the system). Analogous
behavior is observed for the model with nonconformity but
only for q � 5. In all these cases we can easily calculate the
critical value p∗ by making a simple observation concerning
the behavior of the effective potentials (15)–(17) for q � 5 at
c = 1/2 (see also Fig. 1 for clarity): For p < p∗ potentials
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0.6

0.8
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c

0 0.25
0

0.2

0.4

0.6

0.8

1

p

c

FIG. 8. Flow diagrams for the models with anticonformity for
q = 2 (top panel) and independence for q = 9 (bottom panel).
Particular values of q have been chosen just as examples and
the dependencies between stationary values of c and parameter p

for other values of q are seen in Fig. 7. Here solid lines denote
stable (attracting) steady values of concentration that correspond to
the minima of potentials (15)–(17), whereas dotted lines denote
unstable values of c that correspond to maxima of potentials. Arrows
denote the direction of flow, i.e., how the concentration changes in
time. Particularly interesting behavior is related with independence
(bottom panel). Starting from two different initial concentrations
disorder or order can be reached as a steady state (hysteresis).

V (c,p,q) have the maximum values for c = 1/2 and therefore

∂2V (c,p,q)

∂c2

∣∣∣∣
c= 1

2

< 0. (21)

For p > p∗ potentials V (c,p,q) have the minimum values for
c = 1/2 and therefore

∂2V (c,p,q)

∂c2

∣∣∣∣
c= 1

2

> 0. (22)

This means that for p = p∗ the maximum changes to the
minimum at c = 1/2:

∂2V (c,p,q)

∂c2

∣∣∣∣
c= 1

2

= 0 ⇒ ∂F (c,p,q)

∂c

∣∣∣∣
c= 1

2

= 0. (23)

Hence, the critical values are as follows: For anticonformity I,

p∗(q) = q − 1

q + 1
, (24)
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FIG. 9. Schematic plot of a potential for the model with indepen-
dence and q > 5. For p ∈ (0,p∗

1), potential V (c,p,q) has two minima
that correspond to the states with majority. For p ∈ (p∗

1 ,p
∗
2), the

potential V (c,p,q) has three minima and the state without majority is
metastable. For p ∈ (p∗

2 ,p
∗
3), the potential V (c,p,q) has three minima

and the states with majority are metastable. Finally, for p ∈ (p∗
3 ,1),

the potential V (c,p,q) has only one minimum that corresponds to
the state without majority. The exact form of the potential is given by
Eq. (17).

for anticonformity II,

p∗(q) = q − 1

2q
, (25)

and for independence with q � 5,

p∗(q) = q − 1

q − 1 + 2q−1
. (26)

As we see, simple calculations allowed us to find the
critical points for almost all cases, except for the model with
nonconformity for q � 6. In all cases considered above, there
is a continuous phase transition between phases with and
without majority. However, for the model with independence
and q � 6 the phase transition becomes discontinuous, which
has been already discussed in Sec. III. This behavior can be
also suspected from the form of the effective potential (17),
which for q � 6 has the following properties (see also Fig. 9):

For p ∈ 〈0,p∗
1), V (c,p,q) has two minima.

For p = p∗
1 , in V (c,p,q) a third minimum emerges.

For p ∈ (p∗
1,p

∗
2), V (c,p,q) has three minima.

For p = p∗
2 , V (c,p,q) has three equal minima.

For p ∈ (p∗
2,p

∗
3), V (c,p,q) has three minima.

For p = p∗
3 , in V (c,p,q) the third minimum disappears.

For p ∈ (p∗
3,1〉, V (c,p,q) has one minimum.

As we see, there is an interval p ∈ (p∗
1,p

∗
3) in which potential

V (c,p,q) has three minima and therefore the stationary
probability density function has three maxima (see Fig. 2).
In this region we have a coexistence of two phases—with
and without majority. For p < p∗

2 the state with majority is
stable and the state without majority is metastable and for
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FIG. 10. (Color online) Transition points p∗ as a function of q

for all three models. Solid lines denote the line of the phase transition
and dashed lines denote spinodal lines, i.e., determine the region
with metastability. Several differences among models are visible. As
seen, both models with anticonformity behave qualitatively the same:
the critical value of p increases with q. However, for the model
with independence the transition point decreases with p. Moreover,
for q � 6 the phase transition changes its type from continuous to
discontinuous.

p > p∗
2 the state with majority is metastable and that without

majority is stable. Consequently, the phase transition appears at
p = p∗

2 = p∗ and p = p∗
1,p

∗
3 designate spinodal lines [27,28].

Transition points p∗ as a functions of q for all three
models are presented in Fig. 10. As seen, both models with
anticonformity (I and II) behave qualitatively the same: the
critical value of p increases with q. However, for the model
with independence the transition point decreases with p.
Moreover, for q = 5 in the case with independence, the phase
transition changes its type from continuous to discontinuous.
To clarify our results we decided to present the complete
phase diagrams for the models with anticonformity and
independence in Fig. 11. Because results for both models with
anticonformity (I and II) are qualitatively the same we present
the phase diagram only for the model with anticonformity II.

The first difference between models with anticonformity
and independence—connected with the qualitative depen-
dence between p∗ and q—is easy to explain heuristically.
It is quite obvious why in the model with independence
the critical point p∗ decreases when q increases. When q

increases it becomes unlikely to choose randomly q parallel
spins and therefore the noise term dominates because it is
independent of the state of the q lobby. Similarly, it can be
understood why in the model with anticonformity the critical
point p∗ increases with q. It should be recalled here that
anticonformity takes place only when q + 1 parallel spins
are chosen randomly, which is more unlikely than choosing
q parallel spins. Therefore the anticonformity term declines in
importance even more than the conformity term as q increases.
The second difference between models—the change of the
transition type in the model with independence—is not so
easy to understand intuitively. This result has been obtained
numerically from the potential (17), but in the next section
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FIG. 11. (Color online) Phase diagrams for the models with
anticonfomity II (top panel) and independence (bottom panel).
As seen, for the model with anticonformity, the critical value p∗

increases with q, and for the model with independence, it decreases
with q. For anticonformity (top panel) there is a continuous phase
transition (denoted by the solid line) between order (i.e., c �= 1/2
or, equivalently, m �= 0) and disorder (i.e., c = 1/2 or, equivalently,
m = 0). In the model with independence (bottom panel) there is
a continuous phase transition only for q < 5. At q = 5 the phase
transition changes its type from continuous to discontinuous. For
q > 5 an area in which one of two phases (ordered or disordered) is
metastable is limited by so-called spinodal lines. This area is labeled
as “coexistence,” although the real coexistence occurs only on the
transition line. However, in the region of metastability both phases can
be observed depending on the initial conditions (hysteresis), which
can be also seen from the flow diagram in Fig. 8.

we will show how this result could be also derived from an
approximate Landau description.

VI. LANDAU DESCRIPTION

Although we were able to calculate critical points for
the model with anticonformity and for the model with in-
dependence with q � 5 directly from the potentials (15)–(17),
it can be instructive to use the classical description proposed
by Landau for equilibrium phase transitions [26]. It has been
shown that this kind of description can be also obtained
as a mean-field approach for the Langevin equation of
nonequilibrium systems with two (Z2) symmetric absorbing
states [21,22].

In our paper we have written the master equation as a
function of concentration c = N↑/N of up spins. We have
decided to use this quantity for convenience since calculations
are simple and equations have compact forms. However, to
meet the symmetry requirement [21,22] one should use an

order parameter (in this case magnetization) defined as

φ = N↑ + N↓
N

(27)

for which potentials (15)–(17) are symmetric under reversal
φ → −φ.

Following the approach presented in Refs. [21,22], which
coincides with the classical approach proposed by Landau,
we expand potentials (15)–(17), rewritten as a function of φ,
into power series and keep only the first three terms of the
expansion:

V (φ) = Aφ2 + Bφ4 + Cφ6, (28)

where coefficients A= A(p,q), B = B(p,q), and C = C(p,q)
depend on the model.

For the model with independence,

A(p,q) = − (1 − p)

2q

(q − 1)

2
+ p

4
,

B(p,q) = − (1 − p)

2q

q(q − 1)(q − 5)

24
,

C(p,q) = − (1 − p)

2q

q(q − 1)(q − 2)(q − 3)(q − 9)

720
. (29)

From Landau theory it is known that for B(p,q) > 0 and
C(p,q) > 0 there is a critical point at which A(p,q) changes
sign [26]. For A < 0 the potential V (φ) has two symmetric
minima and thus the system is driven to one partially ordered
state with φ �= 0. For A > 0 the potential V (φ) has a minimum
at φ = 0 and therefore the system remains in an active
disordered state and a magnetization φ fluctuates around zero.
From Eq. (29) it is easy to calculate that

A(p,q) = 0 → p = p∗ = q − 1

q − 1 + 2q−1
,

A < 0 → p < p∗, φ �= 0, (30)

A > 0 → p > p∗, φ = 0,

which coincides with the result (26) obtained from the exact
version of the potential (17).

As shown within classical Landau theory, for B(p,q) < 0
and C(p,q) > 0 a discontinuous jump in the order parameter
is expected [26]. Again from Eq. (29) it is easy to see that
B(p,q) < 0 for q > 5 (see also Fig. 12). Therefore we expect
a discontinuous phase transition for q > 5, which also agrees
with the results obtained from Eq. (17). It should be mentioned
here that a transition for B � 0 could possibly be included in
the class of generalized voter models (the so-called unique
GV transition) [21]. It has been noticed for a general class
of models with two (Z2) symmetric absorbing states that for
B � 0 the location of the potential minimum changes abruptly
from φ = 0 to φ ± 1; i.e., a discontinuous phase transition is
observed [21]. In our model the situation is slightly different,
because for p > 0 there are no absorbing states and below
the transition point |φ| < 1. However, still the system jumps
from a totally disordered to a partially ordered state; i.e., a
discontinuous phase transition is observed.

One should also notice that in the case of a q-voter model
with independence for q > 9 also C(p,q) becomes negative
and than the approximation (28) is no longer valid.
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FIG. 12. Coefficient B(p,q) [see the effective potential (28)] for
a critical point p = p∗ at which A(p,q) changes sign. For the model
with independence (denoted by “o”) coefficient B < 0 for q > 5,
which suggests a discontinuous phase transition, whereas for the
model with anticonformity (denoted by “*”) coefficient B � 0 for
any value of q and therefore the transition is continuous for arbitrary
values of q.

Analogous calculations can be done for the models with
anticonformity. Because both models with anticonformity are
qualitatively the same we present here results for the model
with anticonformity II. In this case,

A(p,q) = 2pq − q + 1

2q
,

B(p,q) = −1

4

1 − p

2q

[(
q − 1
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)
−

(
q − 1

1

)]
+ 1
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p

2q

(
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3

)
,

C(p,q) = −1
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q − 1

5

)
−

(
q − 1

3

)]
+ 1
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p

2q

(
q + 1

5

)
.

(31)

Therefore in the case with anticonformity,

A(p,q) = 0 → p = p∗ = q − 1

2q
,

A < 0 → p < p∗, φ �= 0, (32)

A > 0 → p > p∗, φ = 0,

which coincides with the result (25). Moreover, for the model
with anticonformity (see Fig. 12) coefficient B(p = p∗,q) � 0
for any value of q; i.e., the transition is continuous for arbitrary
values of q.

VII. CONCLUSIONS

In this paper we have asked questions about the im-
portance of the type of nonconformity (anticonformity and
independence) that is often introduced in models of opinion
dynamics (see, e.g., [13,14,19,20]). We realized that the
differences between the different types of nonconformity are
very important from social point of view [17] but we have
expected that they may be irrelevant in terms of microscopic

models of opinion dynamics. To check our expectations we
have decided to investigate a nonlinear q-voter model on
a complete graph, which has been recently introduced as a
general model of opinion dynamics [12].

To our surprise, the results for the model with anticon-
formity are qualitatively different from those for the model
with independence. In the first case there is a continuous
order–disorder phase transition induced by the level of anticon-
formity p. The critical value of p grows with the size of the q

lobby. On the other hand, for the model with independence the
value of the transition point p∗ decays with q. Moreover, the
phase transition in this case is continuous only for q � 5. For
larger values of q there is a discontinuous phase transition and
coexistence of ordered (with majority) and disordered (without
majority) phases is possible.

We have suggested in the title and the introduction of the
paper that both types of nonconformity play the role of noise.
However, only independence introduces real random noise,
which plays a role similar to temperature. From this point of
view the change of the type of transition resembles a similar
phenomena in the Potts model (for a review see [29]). In the
Potts model there is a first-order phase transition for q > 4 and
a second-order phase transition for smaller values of q, where
q denotes the number of spin states. Of course, in the case of
our model q does not denote the number of states, which is
always 2, but the size of the group. A similar observation has
recently been made by Araujo et al. [30] within a model of
tactical voting. They have considered q candidates on which
citizens vote and proposed a balance function to quantify the
degree of indecision in the society due to the coexistence of
different opinions. It turned out that for some values of model
parameters the model boiled down to the q-state Potts model,
although similarly, like in our model, q denoted the number of
candidates instead of the number of states. A similar change of
the type of transition has been also observed in a general class
of systems with two (Z2) symmetric absorbing states within a
Langevin description [21,22]. Moreover, it has been suggested
that models with many intermediate states (i.e., the Potts model
or a simple three-state model described in Ref. [22]) behave as
equivalent two-state models with effective transitions that are
nonlinear in the local densities [22], which is the case of a q-
voter model or a two-state model of competition between two
languages [31]. The theory presented in Refs. [21,22] suggests
also that the continuous phase transition that is observed
for q < 5 could possibly be included in the Ising class,
whereas the discontinuous phase transition that is observed
for q > 5 would fall into the class of generalized voter
models.

Concluding the paper we would like to pay attention to one
more phenomena that is visible in Fig. 10. For lobby q = 2
the results are the same for anticonformity and independence.
Therefore it comes as no surprise that the difference between
the two types of nonconformity has not been noticed while
studying the Sznajd model (i.e., q = 2) [14,20].
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Abstract The aim of this paper is to examine how different types of social influence, intro-
duced on the microscopic (individual) level, manifest on the macroscopic level, i.e. in the
society. The inspiration for this task came mainly from two sources—social psychology that
recognize two different types of nonconformity (anticonformity and independence) and the
observation related to the agent-based modeling that was verbalized in 2002 by Macy and
Willer that there was a little effort to provide analysis of how results differ depending on the
model designs. To achieve the goal, we propose a generalized model of opinion dynamics,
that as a special cases reduces to the linear voter model, Sznajd model, q-voter model and the
majority rule. We use the model to examine the differences, that appear at the macroscopic
level, under the influence of two types of nonconformity, introduced on the microscopic
level. We answer the question if the observed differences are universal or model dependent.

Keywords Agent-based modeling · Opinion dynamics · Phase transitions

1 Introduction

Recently several very interesting reviews on agent-based models (ABM) have appeared [1–
5] indicating the rapid growth of interest in using ABM in social sciences. In physics this
type of approach is known for years under the name microscopic modeling and is the do-
main of statistical physics. Therefore, perhaps one should not wonder that physicists had the
idea to use methods of statistical physics to analyze social systems. In 1982 Serge Galam
et al. published the first paper on sociophysics [6]. As Galam mentioned in his personal
testimony [7] at the beginning it was a hard opposition to Sociophysics from inside Physics.

Nowadays the field of Sociophysics is widely accepted (see a very recent book by
Galam [8] and a review by Castellano, Fortunato and Loreto [9]). On the other hand, as
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has been noted recently, despite the power of ABM in modeling complex social phenomena,
widespread acceptance in the highest-level economic and social journals has been slow due
to the lack of commonly accepted standards of how to use ABM rigorously [4]. One of the
main problems in the field of social simulations, as mentioned by Macy and Willer [1], is
‘little effort to provide analysis of how results differ depending on the model designs’. As
have been noted [8, 10, 11], the similar problem is seen in a field of sociophysics. As an
example let us consider opinion dynamics models [9]. Among variety of models describing
opinion dynamics there is a particularly interesting class of simple models based on the idea
of Ising spins (for some comments on the Ising model see Sect. 3). Generally, an individual
in ABM (so called agent) can be characterized by:

– several traits of different types, like in e.g. social impact models [12, 13] or CODA
model [14],

– a set of traits of the same type, for example a vector of integer variables in Axelrod
model [15],

– a single trait that takes continuous values, like an opinion in bounded confidence models
[16, 17],

– or a single trait that takes discrete values, e.g. various voter models [18, 19].

1.1 Spinson—A Particularly Simple Agent

In the simplest possible case an agent is characterized by a single variable that takes only
one of two values (usually +1,−1). This type of agents were introduced in many different
models of opinion dynamics, e.g. voter model [18, 19], majority model [20–22], Sznajd
model [23] or the general sequential probabilistic model [24]. Analogous type of a variable
has been introduced in 1920 by Wilhelm Lenz to describe a phase transition in a magnetic
system and therefore this type of an agent is often called a spin, at least by physicists.
The spin in the Ising model can be imagined as an arrow pointing up or down (↑ or ↓).
From the social point of view we deal with a person that has one of two possible opinions,
attitudes etc. (e.g. ‘yes’ or ‘no’, ‘in favor’ or ‘against’, Mac or PC user). Therefore, to avoid
such nonsensical statements like ‘person up’ or ‘person down’, that may be confusing for
people from outside sociophysics, from now on we call this type of an agent spinson—as
a combination of two words spin and person. Spinson should be understood as a type of
an agent in ABM that is characterized by only one binary trait and is represented in all
illustrations that appear in this paper as a combination of an arrow and a man (see Figs. 1,
2, 3 and 7).

1.2 The Goal and the Structure of the Paper

To face the problem posed by Macy and Willer [1], we introduce a generalized voter model.
The model, as a special cases, includes other popular sociophysics models like the linear
voter model, Sznajd model, q-voter model and the majority rule. We should admit here that
this is not the first generalization of sociophysics models. Very interesting idea has been in-
troduced already in 2005 by Galam [24]. He has proposed a general sequential probabilistic
frame (GMP), which was aimed to extend a series of earlier opinion dynamics models based
on spinsons. In GMP the majority rule is weighted by a function of the majority to minority
ratio. In 2008 Lambiotte and Redner have studied a family of models where the propen-
sity for a spinson to align with its local environment depended nonlinearly on the fraction
of disagreeing neighbors [25]. Other attempt to the generalization of spinson’s models has
appeared in [26] under a name nonlinear q-voter model. This model became the basis for
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the model that will be presented in this paper. We would like to strongly emphasize that
inventing another new model of opinion dynamics is not a goal of this paper. The main
goal is to answer questions related to different types of nonconformity—anticonformity and
independence (see Sect. 2):

1. Do differences between two types of nonconformity, that are recognized by social psy-
chologists on the individual (microscopic) level, manifest on the society (macroscopic)
level, at least in ABM approach based spinsons?

2. If any differences manifest on the macroscopic level, are they universal, i.e. do not depend
on the model designs?

One could argue that to fairly answer at least the second question, one should not only
investigate all existing spinson’s models but also all that might be potentially invented in the
future. It would be hard to disagree with such an objection. However, it would be hard under
one condition—if in all considered cases results would be the same (at least qualitatively).
Within such a scenario we would not be able to give any conclusive answer. However, there
is another possibility—results would significantly depend on the model designs. Within such
a scenario we would be able to give the fair answer to the question. Therefore, it seems that
a good starting point is to choose a possibly general model in which it is easy to implement
various types of social influence. Just because of universality and simplicity we have decided
to deal with a generalized q-voter model.

The paper is organized as follows. In the next section we describe the motivation that
came from the social psychology and concerns different types of social influence. In Sect. 3
we present some insights from statistical physics, mainly concerning the Ising model, but
also differences between continuous and discontinuous phase transitions. In Sect. 4 we de-
scribe shortly different types of social response introduced in sociophysics. Next, in Sect. 5
we introduce a basic q-voter model [10] and next show differences between two types of
nonconformity within this model (Sect. 6). Finally, in Sect. 7 we introduce a generalized
q-voter model and try to answer the question about universality of the obtained results. We
conclude the paper by the section ‘Summary’. Because the paper is dedicated to a possibly
general audience, also from outside physics, we try to avoid calculations or technical issues
that are not particularly important for the paper. If any equations appear in this paper they
are dedicated for those who would like to repeat our results. Other readers can omit them
hopefully without loss of understanding the meaning of the paper. Moreover, to make pa-
per accessible for a broad audience, we describe some basics, that might be well known for
some readers, and we support the descriptions of models with illustrations.

2 Inspirations from Social Psychology

Decades of research in a field of social psychology have shown that conformity is ubiquitous.
Numerous studies have indicated that there are many various motivations to match or imitate
others and many different factors influence the level of conformity [27, 28]. For example it
has been show that conformity increases with the number of people serving as the source
of social impact. In 1981 Latane has analyzed data from several social experiments and
concluded that the level of conformity I seems to grow with a group size N according to the
psychosocial power law I ∼ Nα , where α < 1 various for different experiment [29]. This
means that although conformity grows with the size of the majority, the effect of the N -th
person is weaker than that of the N − 1-th.

Moreover, Solomon Asch has shown, withing his classical experiment ‘with lines’, that
the presence of a social supporter reduced significantly the level of conformity. The power
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Fig. 1 Possible responses to the social influence (so called diamond model) derived from Willis’s scheme
[33, 34] and formalized by Nail et al. [35–38]. Here presented within a q-voter model that will be described
precisely in Sect. 5. In the q-voter model a group of q spinsons is the source of the social influence only if all
q spinsons are parallel (unanimous majority)

of social support was demonstrated in the empirical studies showing that participants were
far more independent when they were opposed by a seven person majority and had a partner
than when they were opposed by a three-person majority and did not have a partner [30].
Taking into account all results of social experiment, it is not entirely clear how the confor-
mity should be modeled and which factor is the more important—the size of the majority or
the unanimity (if any of two).

Although the power of social influence is undeniable, people usually fail to recognize
their own susceptibility to the social influence. In series of 5 social experiments it has been
shown that people see themselves as alone in a crowd of sheep, i.e. see others as more con-
forming than themselves [31]. Moreover, although conformity can confer many benefits on
an individual, but on the other hand nonconformity can also be advantageous [28]. Rel-
atively recently it has been shown in the series of three experiments how conformity and
nonconformity may be influenced by two fundamental social motives—protecting oneself
from harm and seeking for a sexual partner [28]. On the other hand, it is also known that
the level of conformity/nonconformity is different in different human cultures, although the
origin of those differences remains unclear [32].

Although there are different motives and factors influencing conformity, this kind of be-
havior manifests always as a match for a certain group. On the other hand, nonconformity
can manifest in two different ways. According to [33–38], there are two types of nonconfor-
mity (see also Fig. 1):

– Independence—resisting influence. In this case the situation is evaluated independently
of the group norm. Truly independent people are oblivious to what is expected [39].

– Anticonformity—rebelling against influence. It appears often as a result of maintaining
the uniqueness. Anticonformists are similar to conformers in the sense that both take cog-
nizance of the group norm—conformers agree with the norm, anticonformers disagree.

As mentioned in [28], both types of nonconformity tend to be effective in differentiating
people from others. The question, that we have recently posed, has been related to the way
in which nonconformity differentiates people. It seems to be quite important, from the psy-
chological point of view, what is the type of nonconformity—independence or anticonfor-
mity. However, at the level of the society it is probably very difficult, or even impossible, to
distinguish which type of nonconformity is responsible for a particular social phenomenon.
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Fig. 2 All models in this paper are considered on a complete graph, i.e. all agents are nearest neighbors. In
other words, each agent is connected by direct links with all others. This topology is particularly convenient
for the analytical calculations and corresponds to the approach known from statistical physics as a mean
field approximation (MFA). Within such a topology the concentration (or equivalently the number) of ‘up’
spinsons defines completely the state of the system—if all agents are the nearest neighbors there is no sense
to talk about a distance or a structure. From the social point of view this can be understood as a community in
which each member can equally influence any other member (in biology this is called panmictic population).
This is implemented as follows—there is a set of N agents and in every time step a randomly chosen group
of individuals can influence a voter which is also randomly chosen

Therefore it would be very difficult to answer if the differences between two types of non-
conformity are significant in the real societies. However, one could try to answer much sim-
pler question if the differences between two types of nonconformity are significant for the
artificial societies described by ABM. Recently we have answered this question within so
called q-voter model [10]. In this paper we would like to face the problem within a broader
class of models. However, before going further let us recall some facts from the statistical
physics, that might be interesting and instructive for those who are dealing with problems
related to the social influence.

3 Insights from Statistical Physics

Probably each physicist has heard about the Ising model. This is undoubtedly the most
prominent model in a field of statistical physics and probably also the one that was applied
the most intensively outside pure physics. The history of the model is very interesting itself,
but it has been described already many times so it does not make sense to repeat it here. For
those who would like to learn more about the model we recommend one older and several
recent reviews [40–43].

3.1 Recipe for the Ising Model

Here, we only recall this informations that might be useful for people dealing with the social
influence. We present a model giving a simple recipe describing its main components:

1. Topology can be treated in this case as a set of N nodes and M links between nodes, for
example: regular lattice, complete graph, complex network etc. In statistical physics we
use usually regular lattices due to the crystal structure of the condensed matter. However,
for the social system probably complex network or other type of graph is more accu-
rate. In turn of modeling panmictic population (each individual can potentially contact
with any other) one can use complete graph, which is also very convenient for analytical
calculations (for the explanation of a complete graph see Fig. 2).
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2. Dynamical binary variables that occupy nodes Si = ±1, i = 1, . . . ,N . In statistical
physics we usually think about spins (in this case arrows pointed up ↑ or down ↓). For
social applications one can think about person having one of the two possible attitudes,
opinions or behaviors (yes/no, in favor/against, PC/Mac user etc.).

3. Internal interactions, i.e. interactions between individuals. In the basic Ising model
interactions take place only in the nearest neighborhood (nn) which are determined by
direct links. Two spins (or spinsons) are nn if they are directly connected by a link.
Because the Ising model has been originally designed to describe magnetic systems,
usually one of two types of internal interactions are considered:
(a) Ferromagnetic interactions play the similar role to the conformity. Due to these

interactions spins flip to mimic the majority in the neighborhood. For example if
considered spin is ↓ and it has three neighbors that are ↑ and one ↓ it flips.

(b) On the other hand, antiferromagnetic interactions plays in a sense a role of anti-
conformity—spin takes a state of the minority.

In the Ising model ferromagnetic and antiferromagnetic interactions are described by the
following Hamiltonian:

H = −
∑

〈i,j 〉
Ji,j SiSj , (1)

where 〈i, j〉 denotes that i and j are nearest neighbors and Ji,j describes interactions
between two spins Si and Sj . If Jij > 0 interactions are ferromagnetic and if Jij < 0
antiferromagnetic. It is worth to mention that mixing ferro and antiferro interactions was
introduced in the case of social applications by Galam in [44]. We would like to reassure
those who are not familiar with the mathematics or physics, that this is not necessary to
understand precisely Eq. (1) in order to follow the paper and it is presented mainly to
show that in the statistical physics interactions are represented usually by the Hamilto-
nian.

4. External interactions, i.e. interactions of a system with some external force. Magnetic
system can for example interact with an external magnetic field. From the social point
of view it might be information, advertisement in mass media or a strong leader. In the
Ising model interactions with an external field are described by the term −h

∑
i Si and

therefore the full Hamiltonian for the basic Ising model:

H = −
∑

〈i,j 〉
Ji,j SiSj − h

∑

i

Si . (2)

It should be mention here that the above Hamiltonian was used for social application for
the first time in [45]. The extension by adding local symmetry breaking fields was done
in [45, 46]

There is another type of an external influence that is not described by the above
Hamiltonian—the one that introduces temperature. In physics we think usually about
interactions with thermostat that provides a certain temperature in the system.

– If the temperature is low interactions described by the Hamiltonian play a main role.
– As temperature increases spins start to behave more chaotic. The higher is the temper-

ature the more nervous are spins neglecting all interactions described by the Hamil-
tonian. In the very high temperature spins are flipping completely randomly, indepen-
dently of the interactions with the neighborhood.

From this point of view the temperature plays a role of the independence. With the tem-
perature independent behavior of spins increases. As a result of the competition between
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interactions (that dominate in lower temperatures) and the temperature (which introduces
randomness) a continuous phase transition appears. Above a certain critical temperature
Tc the system is disordered and below ordered. This means that, for example in a case of
ferromagnetic interactions (conformity), there is some majority in the system.

3.2 A Few Words on Phase Transitions

As we have already mentioned a certain type of a phase transition, that is called continuous,
appears in the Ising model due to the temperature. This is a very different type of the phase
transition that is observed for example between ice and liquid [47]. At the temperature below
zero Celsius degrees water is usually in a solid state, i.e. ice. However, if one cools down
water gently, it is possible to reach the negative temperature and keep water as liquid. In such
a case we speak about supercooled water which is a metastable state—small disturbance
can bring the system to the stable state, i.e. ice. Moreover, at the transition point water
coexists with an ice—therefore we can have ice cubes in our drink. This type of transition
is called discontinuous. If the transition between ice and water would be continuous, we
could neither prepare drinks on rocks nor observe floes on the lake.

In the case of a continuous phase transition there is no phase coexistence. For a given
conditions (for example for a given temperature) we have only one of possible phases (for
example paramagnetic or ferromagnetic phase). In the case of continuous phase transitions
an order parameter describing the state of the system (e.g. magnetization, concentration,
opinion etc.) changes continuously. For example with an increasing temperature magnetiza-
tion continuously decreases and achieves zero (no magnetization, complete disorder) at the
critical temperature.

As we have written above, the temperature plays a similar role as independence. From
this point of view:

– Continuous phase transition means that there is a complete consensus (all members of the
society have the same opinion) if the level of independence is zero and it continuously
decreases with an increasing independence up to a critical point. At a critical level of
independence consensus achieves zero and above the critical point there is no majority in
the society (status-quo or stalemate situation).

– In the case of discontinuous phase transition there is a ‘jump’ of an order parameter. If the
phase transition between consensus and status-quo would be discontinuous than almost
fully ordered system (large majority in the society) could turn to a stalemate system at the
transition point. Moreover, unambiguous prediction of the state near the transition point
would be impossible due to the metastability and phase coexistence.

3.3 Spin Models Versus Social ABM Models

As noted by Stauffer the pioneer ABM models of segregation, proposed by Thomas
Schelling [48] over 40 years ago, are strikingly similar to the Ising model with Kawasaki
dynamics [49]. After a couple of decades, the idea of binary states, that can be easily linked
with the famous Ising model, is still present in many social papers. For example a number
of innovation diffusion models represent adoption behavior by means of a single dichoto-
mous variable that represents agents’ state—agents are either in a ‘potential adopter’ or an
‘adopter’ state [5, 50–52].

Of course, in many cases limitation to binary variables may oversimplify the problem, not
only in sociology but also in physics. Therefore statistical physics deliver many other micro-
scopic lattice models that use multi-states variables. It seems that some ABM models may be
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linked to them, even if the similarity is only incidental. For example, Moldovan and Golden-
berg [53] have modeled the resistance to innovations by introducing consumers that may be
in one of three states (uninformed, adopters, and resisters), which reminds the 3-states Potts
model (for review on Potts model see [54]). Multi-state discrete variables, analogous to Potts
spins, have been used also by Deffuant et al. [55]. They have used a fixed state transition
scheme based on interest (no, maybe, yes) and information states (not-concerned, informa-
tion request, no adoption, pre-adoption, adoption) to describe adoption decisions. Thiriot
and Kant have also used multiple discrete states to model diffusion of innovation [56].

The surprising similarity is evident between the XY spin model [57, 58] and a recent
model by Flache and Macy [59]. In both models agents/spins have continuous states and
the power of interaction increases with the similarity between agents. The idea of continu-
ous variables has been also used in famous models of opinion dynamics based on bounded
confidence [17, 60].

Among many interesting spin models there is one, which seems to be particularly in-
teresting for social application, yet it is somehow forgotten. By this we mean so called
Ashkin-Teller model [61], which uses a vector of two traits to describe a state of a single
spin. Exactly the same idea has been used in [62] to describe political attitudes (one trait
was connected with the attitude to the personal freedom and second with the attitude to the
economic freedom). Similar but more general idea appears also in the famous Axelrod’s
model for cultural dissemination [15].

4 Social Influence in Sociophysics Models

Almost all models of opinion dynamics based on spinsons—voter, majority and Sznajd—
have been designed to describe opinion dynamics under the same type of the social influ-
ence, i.e. conformity. Therefore, it is not surprising that in all these models complete con-
sensus (all spinsons parallel) is a steady state. Obviously, in real social systems complete
unanimity is not reached or if ever reached never stays forever. If one follows public opin-
ion records, immediately realizes that it permanently changes. To make models of opinion
dynamics more realistic, several modifications have been proposed:

– In 1991 Serge Galam and Serge Moscovici proposed a model with non-social state, i.e.
the state in which an individual is not subjected to the environment [45]. This idea, which
is perfectly consistent with the concept of independence, has been developed by Galam
in [46]. Interplay between independent and biased choices has been introduced by an
exchange amplitude I that measured a degree of interactions between individuals.

– In 2003 Mauro Mobilia has introduced zealot [63]—a biased individual who favors one
opinion. Zealot is allowed to change his state from −1 to +1 (with rate r > 0) without
regard to his neighbors, with whom he nevertheless interacts. Therefore, zealot represents
a person who acts independently with probability r , which reminds the idea proposed
earlier by Galam [45, 46].

– In 2004 Serge Galam has introduced contrarians [64]—with a certain probability an agent
adopts the choice opposite to the prevailing choice of the others, whatever this choice is.
Keeping the naming from the diamond model (see Fig. 1) this type of the social response
corresponds to anticonformity. This type of social behavior have been introduced later in
the Sznajd model by Schneider [65] and in a modified version by Lama et al. [66].

– In 2007 Galam and Jacobs have introduced inflexibles [67]—inflexible agents keep their
opinion always unchanged. Therefore, from the psychological point of view inflexibles
represent a special case of independence.
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– In 2011 independence has been introduced to the Sznajd model [68]—with probability p

each individual in the system acts completely independently from the neighborhood and
may randomly change its state.

It was shown that the presence of zealots, contrarians, inflexibles or independence signifi-
cantly changes not only the time evolution of the system but also steady states. In particular,
it was shown that for a low concentration of contrarians or a low level of independence a new
mixed phase is stabilized, with a coexistence of both opinions, i.e. minority persists. More-
over, there is a continuous phase transition into a new disordered phase with no dominating
opinion [64, 66, 68].

5 Anticonformity and Independence Within the q-Voter Model

Voter model [18, 19] is one of the most recognized in a field of non-equilibrium statistical
physics. It can be treated not only as a toy model of an Ising spin’s system but also carica-
ture of opinion dynamics. In the voter model, as in the Ising model, individuals occupy the
nodes of a graph. In the simplest version of the model, each individual can be in one of two
equivalent states and simply adopts a state of one of its neighbors that is randomly chosen
in each update event. This is the simplest way to introduce conformity that one can imagine
and probably oversimplified. As we have already written in Sect. 2, there are numerous fac-
tors that influence conformity and it is not entirely clear how it should be modeled. Probably
for this reason several models has been already proposed [8, 9], among them Sznajd model
[23], majority model [20–22] or recently q-voter model [26]. The latter model is particularly
interesting because as special cases reduces to the linear voter or the Sznajd model. In this
model q , randomly picked, neighbors influence a voter to change opinion. If all q neighbors
agree, the voter takes their opinion; if they do not have a unanimous opinion, still a voter
can flip with probability ε. For q = 2 and ε = 0 the model reduces to the Sznajd model on
a complete graph [75] and for q = 1 to the linear voter model. Moreover, the case of ε = 0
can be justified by results obtained in the social experiments by Asch—unanimity is the key!
[30] (see Sect. 2).

In [10] we have investigated q-voter model with ε = 0 and two types of nonconformity—
anticonformity and independence. We have chosen a topology of a complete graph, as a par-
ticularly convenient for analytical calculations (see Fig. 2). We would like to stress here that
we do not claim that the topology of a complete graph is the most suitable for describing
social systems. It is well known that society are much better described by complex networks
e.g. small-world or scale-free Barabasi-Albert networks (for reviews see [69–71]). We have
chosen the topology of a complete graph mainly because it allows for the analytical treat-
ment and in fact corresponds to the method known from statistical physics as a mean field
approximation [75].

Let us recall here briefly the model itself and results that have been obtained. Within the
q-voter model we consider a set of N spinsons. At each elementary time step q spinsons
S1, . . . , Sq are picked at random and form a group of influence, lets call it q-lobby. Then
the next spinson, on which the group can influence is randomly chosen, we call it voter. In
the model proposed in [10] conformity and anticonformity take place only if the q-lobby
is homogeneous, i.e. all q spinsons are parallel. In a case of conformity (that takes place
with probability 1 − p) voter takes the same decision as the q-lobby, whereas in a case of
anticonformity (that takes place with probability p) the opposite opinion to the group. In a
case of independent behavior (that takes place also with probability p), voter does not follow
the group, but acts independently—with probability 1/2 it flips to the opposite direction, i.e.
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Fig. 3 Illustration of the q-voter model with anticonformity (Model A) and independence (Model B). At each
elementary time step q spinsons are picked at random and form a group of influence (q-lobby). Then the voter,
on which the group can influence, is randomly chosen. With probability p voter behaves like anticonformist
(in a case of Model A) or independent (in Model B) and with probability 1 −p like conformist. In this model
conformity and anticonformity take place only if the q-lobby is homogeneous, i.e. all q individuals are in the
same state. In the case of conformity the voter takes the same decision as the q-lobby, whereas in a case of
anticonformity the voter takes the opposite opinion to that of the group. In a case of independent behavior, the
voter does not follow the group, but acts independently—with probability 1/2 it flips to the opposite direction

Sq+1 → −Sq+1 (see Fig. 3). In [68] we have proposed a more general type of nonconformity
in which spinson flips with probability f ∈ [0,1], but it has been shown that there is a scaling
relation between p and f and therefore only one of these parameters can be chosen as an
independent.

The precise algorithms in a case with anticonformity (Model A in Fig. 3) and indepen-
dence (Model B in Fig. 3) are given below.

5.1 Algorithm in a Case with Anticonformity

1. Initialization. For each node of a graph i = 1, . . . ,N choose a random number pri ∈
[0,1]. If pri < c0 then spinson Si = 1(↑), otherwise Si = −1(↓). With this procedure we
set initial state of the system in which the concentration of ↑-spinsons is equal c0. After
initialization goto 2.

2. Choose randomly q spinsons (q-lobby) S1, . . . , Sq and goto 3.
3. If q-lobby is homogeneous, i.e. S1 = S2 = · · · = Sq than goto 4 otherwise goto 2.
4. Choose randomly a voter Sq+1 and goto 5.
5. Choose a random number pr ∈ [0,1] and goto 6.
6. If pr < p then a voter takes a state opposite to the state of the q-lobby, i.e. Sq+1 = −Sq ,

otherwise goto 7.
7. A voter takes a state of a q-lobby, i.e. Sq+1 = Sq = · · · = S1, goto 2.

Point 6 of the above algorithm means that with probability p voter behaves like anticon-
formist, whereas point 7 means that with probability 1 − p voter conform unanimous ma-
jority of the q-lobby.
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5.2 Algorithm in a Case with Independence

1. Initialization. For each node of a graph i = 1, . . . ,N choose a random number pri ∈
[0,1]. If ri < c0 then spinson Si = 1(↑), otherwise Si = −1(↓). With this procedure we
set initial state of the system in which the concentration of ↑-spinsons is equal c0. After
initialization goto 2.

2. Choose randomly a voter Sq+1 and goto 3.
3. Choose a random number pr ∈ [0,1] and goto 4.
4. If pr < p then Sq+1 → −Sq+1 with probability 1/2 and goto 2, otherwise goto 5.
5. Choose randomly a group of q spinsons (q-lobby) S1, . . . , Sq and goto 6.
6. If q-lobby is homogeneous than a voter takes a state of a q-lobby, i.e. Sq+1 = Sq , goto 2.

Point 4 of above algorithm means that with probability p voter behaves independently, i.e.
flips to the opposite direction with probability 1/2, whereas point 6 means that with proba-
bility 1 − p voter conform unanimous majority of the q-lobby.

5.3 Anticonformity vs. Deviance

Before moving on to discuss the results we would like to explain the naming issues that are
used in this paper. For some readers anticonformity, as introduced by Willis [33], may seem
very obscure term and they would prefer the term deviance, which is widely recognized
in sociology. Let us now explain why we have decided to use terms derived from social
psychology rather than sociology. Going back to Merton’s typology on deviance [72, 73],
deviance is any behavior that violates social norms. From this point of view the concept
of the social deviance is extremely complex—norms can be different in different cultures
and they evolve in time. As a matter of fact, it can be hard to define if a certain behavior is
already a social norm. Therefore in our paper we do not introduce the concept of the social
norm. However, if we would like to define the norm we would probably decide to use some
macroscopic variable like the average opinion (magnetization). In such a case it would be
still possible to introduce nonconformity. For example in paper [74] we have introduced a
kind of social deviance that could be recognized as the innovation [72, 73]. However, in this
paper we do not consider this type of social influence. In our case individual’s choice can be
influence only by the contact with a selected group. In each time step the same individual
can contact with different group. This reminds changing an opinion during a conversation
over a lunch in the cafeteria rather than adjust to the social norm. The idea of introduced
by Willis can be understood as micro interactions between individuals, similarly as spins
are interacting with each other in the Ising model. On the other, hand the idea of deviance
can be understood as the interaction of an individual with some macroscopic variable called
the social norm. Therefore, we believe that the idea of anticonformity and independence
as introduced by Willis is much more suitable in the case of our model than the idea of
deviance.

6 Results for the q-Voter Model with Nonconformity

As we have written, our aim is to check if two different types of nonconformity, introduced
on the microscopic level, lead to different results on the macroscopic level. Therefore we
have to choose and investigate some macroscopic quantity that describes the state of the
system. Because, we deal with a complete graph (see Fig. 2) there is no need to consider
quantities related to the structure. In this case there are two natural quantities that fully
describe the state of the system:
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1. concentration of ↑-spinsons:

c = N↑
N

→ c ∈ [0,1], (3)

where N↑ is the number of ↑-spinsons and N is the total number of spinsons, i.e. N =
N↑ + N↓,

2. or magnetization which a good measure of a public opinion:

m = N↑ − N↓
N

→ m ∈ [−1,1]. (4)

Because there is a simple relation between above quantities:

m = 1 − 2c, (5)

one can freely choose one of them depending on preferences. We have decided to investigate
the behavior of concentration c for convenience—calculations are easier at such a choice.

6.1 The Stationary Value of the Concentration

Initially concentration of ↑-spinsons is c0 and can take any value between 0 and 1. Due to
the social interactions, described by Algorithms 5.1 and 5.2, it changes in the subsequent
time steps. Eventually the system reaches certain steady state that depends on model’s pa-
rameters:

• For the probability of nonconformity p = 0 the system reaches a steady state in which
all spinsons are ‘up’ or all spinsons are ‘down’ (complete order), analogously to the Ising
model at temperature T = 0.

In such a case the stationary value of the concentration c = 1 or c = 0, depending
on the initial conditions. If initially the concentration of ↑-spinsons is the same as the
concentration of ↓-spinsons, which corresponds to c0 = 0.5, both steady states c = 1 and
c = 0 are equally probable.

• For the probability of nonconformity p > 0 the situation is more complicated. The system
evolves and eventually reaches the stationary state but, in a case of a finite system, there
is no single value of a stationary concentration (see Fig. 4).

As seen from the bottom panel of Fig. 4 for the large value of nonconformity p there
is no majority in the system and c fluctuates around 0.5. For smaller values of p there is
a majority in the system and spontaneous transitions between two states appear.

Spontaneous transitions between two states may look intriguing—for a relatively long
time ↑-spinsons are in the majority and then suddenly, without any reason, there is a rapid
change and ↓-spinsons become the majority. These sudden transitions are related to the
fluctuations and therefore are less probable in larger systems. Resistance time in a given
state increases, and fluctuations decrease with the size of the society N . For the infinite
system spontaneous transitions are not observed and the concentration reaches one of the
stationary values with the probability depending on the initial state.

6.2 Probability Density Function of the Concentration

Probability of a state with a given concentration c is described by the probability density
function ρ(c, t), where t denotes time. Because initially concentration of ↑-spinsons is c0,
at time t = 0 the density ρ(c, t) consists of a single peak at c = c0 and is equal zero else-
where. Then the system evolves according to the one of above algorithms, which means
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Fig. 4 Sample trajectories
showing the change of the
concentration in time for the
model of N = 100 spinsons with
anticonformity and q-lobby of
size q = 7. The level of
anticonformity increases from
upper to bottom row and
p = 0.35,0.4,0.5 respectively

that the state of the system, and simultaneously ρ(c, t), changes. The time evolution of
ρ(c, t) can be obtained from the master equation, which is kind of a ‘gain and loss’ formula
[19]. Because in a single time step �t , three events are possible—the concentration c of
↑-spinsons increases or decreases by �N = 1/N or remains constant:

γ +(c) = Prob{c → c + �N }
γ −(c) = Prob{c → c − �N } (6)

γ 0(c) = Prob{c → c} = 1 − γ +(c) − γ −(c),

the master equation takes form:

ρ(c, t + �t) = γ +(c − �N)ρ(c − �N, t)

+ γ −(c + �N)ρ(c + �N, t)

+ [
1 − γ +(c) − γ −(c)

]
ρ(c, t). (7)

Above equation may look complicated for some readers, but as we have already written
it is a kind of a ‘gain and loss’ equation—some events increases the probability that the
concentration of ↑-spinsons increases (these events take place with probability γ +), other
events decreases this probability (these events take place with probability γ −). Therefore
the above equation is simply a recipe for calculating the state of the system at time t . For
the infinite system probabilities γ +(c), γ −(c), γ 0(c) take particularly simple form that were
already presented in [10]:

(A) In the case of anticonformity (Model A in Fig. 3):

γ + = (1 − p)(1 − c)cq + p(1 − c)q+1

γ − = (1 − p)c(1 − c)q + pcq+1,
(8)
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Fig. 5 Stationary probability density function of the concentration of ↑-spinsons for the q-voter model with
anticonformity (upper row) and independence (bottom row) for a system of N = 200 individuals and a lobby
size of q = 7

(B) whereas in the case with independence (Model B in Fig. 3):

γ + = (1 − p)(1 − c)cq + p(1 − c)/2

γ − = (1 − p)c(1 − c)q + pc/2.
(9)

It is also possible to give formulas in a case of a finite system, but since they are longer
and were already presented in [10], we have decided to not repeat them here. Generally,
this is not an easy task to solve analytically equation (7), but it can be done relatively easy
numerically. Solving the equation, we see that the state of the system changes in time and
eventually reaches a certain steady state in which ρ(c, t) = ρ(c) does not change anymore.

As already written:

– If the probability of nonconformity p = 0 then eventually system reaches a steady state
in which all spinsons are ‘up’ or all spinsons are ‘down’.

In such a case stationary probability density function ρ(c) consists of two peaks at
c = 0 and c = 1 and is equal zero elsewhere.

– If the level of nonconformity is very large p → 1 there is no majority in the system, i.e.
c = 0.5 in the steady state (disorder). In such a case ρ(c) consists of a single peak at
c = 1/2 and is equal zero elsewhere.

In Fig. 5 we have illustrated how ρ(c) changes with the level of nonconformity p for the
system of N = 200 spinsons and parameter q = 7. As expected, for small values of p the
system is polarized and for large values of p there is no majority in the system.

The transition between the state with and without majority is qualitatively different in the
case of anticonformity than in the case of independence.

(A) For anticonformity with increasing p maxima become lower and approach each other.
Eventually they form a single maximum at c = 0.5 for p = p∗. This is a typical behavior
for a continuous phase transition [47]. The critical value p∗ increases with q and has
been found analytically in [10] as p∗(q) = (q − 1)/2q .

(B) In the case with independence, for p = p∗(q) the third maximum appears at c = 0.5 (no
majority). This maximum increases with p, while the remaining two maxima decrease.
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Fig. 6 Dependencies between steady values of concentration c and the level of the nonconformity p for the
model with anticonformity (left panel) and independence (right panel) in the case of the q-voter model. Solid
lines correspond to the stable steady states that are eventually reached. For the initial value of concentration
c0 > 0.5 the upper branch is reached, whereas for c0 < 0.5 the lower branch is reached. Dotted lines, that
are visible in a case with independence, denote unstable steady states—if the concentration is equal to the
concentration denoted by the dotted line the system will not evolve. However, if the concentration is above
or below the dotted line, the system will evolve towards stationary concentration denoted by the solid lines.
It is seen that the value of the transition point p∗ between the phase with majority (i.e. c 
= 0.5) and with-
out majority (i.e. c = 0.5) increases for the model with anticonformity and decreases for the model with
independence

This is a typical behavior for a discontinuous phase transition for which we can observe
the phase coexistence [47]. The critical value p∗(q) decreases with q and has been
found analytically in [10] as p∗(q) = (q − 1)/(q − 1 + 2q−1).

6.3 Results for the Large System

As we have already mentioned, with the increasing system size N fluctuations decrease.
This can be seen also from ρ(c). With increasing N peaks in Fig. 5 become more narrow
and higher but do not shift in respect to c. Therefore, the stationary concentrations can be
easily derived from considering the infinite system. In the stationary state the probability of
growth γ + should be equal to the probability of loss γ −:

γ + − γ − = 0. (10)

To calculate stationary values of concentration we simply solve the above equation. More
detailed calculations can be found in [10] and here we present results only as a figure—
dependencies between steady values of concentration c and the level of the nonconformity
p for the q-voter model with anticonformity (Model A in Fig. 3) and independence (Model B
in Fig. 3) are presented in Fig. 6.

Two main differences are seen between Models A and B:

– First of all, the value of the transition point p∗ between the phase with the majority (i.e.
c 
= 0.5) and without majority (i.e. c = 0.5) increases for the model with anticonformity
and decreases for the model with independence. This behavior can be easily explained
recalling that both conformity and anticonformity depend on the state of the q-lobby,
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whereas independence does not. When q increases it becomes unlikely to choose ran-
domly q parallel spinsons and therefore the independence term dominates. On the other
hand, anticonformity takes place only when q + 1 parallel spinsons are chosen randomly.
Therefore the anticonformity term decline in importance more than conformity and p∗

increases with q .
– The second difference between models is related to the type of the phase transition. There

is a continuous phase transition for an arbitrary value of q ≥ 2 in a case of anticonformity,
whereas in a case with independence the transition becomes discontinuous for q ≥ 6 (this
has been already seen in Fig. 5). Unstable fixed point, which is represented by the dotted
line (on right panel in Fig. 6), means that the system cannot escape from it without exter-
nal fluctuations but simultaneously never reaches this point from the outside. Therefore,
concentration evolves only towards stable values, denoted by solid lines, and it jumps be-
tween two almost fully ordered states. This is very different from the behavior observed
in the case with anticonformity (left panel in Fig. 6) where the concentration changes
continuously. From the social point of view it means that, in the case with independence,
very dramatic change of public opinion can take place with the small change of the in-
dependence level (for q ≤ 6). In the case with anticonformity such a rapid change is not
observed. From this point of view independence is more ‘dangerous’ for the social system
than anticonformity, in a sense that it can cause more unexpected changes in the society.

One should remember that the differences between anticonformity and independence,
that are described above, are observed merely within the q-voter model presented in Fig. 3.
Therefore at least two questions naturally arise:

1. Are these differences observed within other models?
2. What is observed in real social systems?

The second question is obviously more important that the first one. Simultaneously, to be
really fair with answering the second question, one should design and conduct adequate
social experiment which is a very difficult task. Therefore, in this paper we will try at least
to answer the first question. As already mentioned in the Introduction, we will not consider
all possible models of opinion dynamics. Instead, we will consider a generalized q-voter
model that as a special cases includes a nonlinear q-voter model, a certain type of a majority
rule and also other cases that have not been considered up till now in the literature.

7 Generalized q-Voter Model

Again we consider a set of N spinsons and at each elementary time step we choose randomly
q-lobby, i.e. a group of q spinsons S1, . . . , Sq . Then we choose randomly a voter Sq+1 on
which the group can influence. In the q-voter model conformity and anticonformity take
place only if the q-lobby is homogeneous, i.e. all q spinsons are parallel.

In the generalized q-voter model conformity takes place if at least r spinsons among
q are parallel, with the assumption that r ∈ [
q/2�, q], where ceiling 
x� is the smallest
integer not less than x. This assumption is made to make the model reasonable from the
social point of view. The generalized model includes, as a special cases, the basic q-voter
model and the majority rule:

– For r = q the model reduces to the q-voter model presented in the previous section, i.e.
unanimous majority is needed.
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– For r = 
q/2� we deal with a kind of the majority rule. In this case the majority that
consists of at least half of the q-lobby is enough for the social influence. This is an idea
introduced by Galam [20], although the algorithm is different since in our model only one
voter changes the state instead of a whole group.

Now we are ready to introduce two types of nonconformity—anticonformity and inde-
pendence:

(A′) The most natural way is to introduce anticonformity analogously to the conformity, i.e.
it takes place if at least r spinsons among q are parallel. However, this is only one of
the possibilities—we will call this kind of nonconformity r-anticonformity.

(A) Another possibility is to introduce anticonformity exactly in a way it was done in the
q-voter model, i.e. anticonformity takes place only if all q spinsons are parallel. This
assumption could be justified by the statement that the main source of anticonformity
is the asserting of uniqueness (see Sect. 2).

(B) This is quite obvious how to introduce independence—spinson changes its state inde-
pendently of a q-lobby, i.e. analogously as in a q-voter model.

Because it is not entirely clear how the anticonformity should be introduced we will inves-
tigate both types (see the illustration of the model in Fig. 7).

In the q-voter model there are only two parameters—the probability of nonconformity
p and the size of the group q . In the generalized q-voter model additionally there is a third
parameter—the threshold r . Therefore analysis is a bit more complicated but nevertheless
we are able, as in a case of the q-voter model, find the stationary behavior of the system.
Again stationary values of concentration c can be derived relatively easily for the infinite
system.

The probability that the number of ↑-spinsons increases in a single time step is given by:

γ + = (1 − p)α↑ + pβ↑, (11)

where α↑ denotes the probability that the number of ↑-spinsons increases due to the confor-
mity and β↑ denotes the probability that the number of ↑-spinsons increases due to the one
of two possible types of nonconformity (anti-conformity or independence). Analogously, the
probability that the number of ↓-spinsons increases (which is equivalent to the probability
that the number of ↑-spinsons decreases) in a single time step is given by:

γ − = (1 − p)α↓ + pβ↓, (12)

where α↓ denotes the probability that the number of ↓-spinsons increases due to the con-
formity and β↓ denotes the probability that the number of ↓-spinsons increases due to the
one of two possible types of nonconformity. Of course there is also nonzero probability that
nothing changes:

γ 0 = 1 − γ + − γ −. (13)

Probabilities that the number of ↑-spinsons increases or decreases due to the conformity
can be calculated as:

α↑ =
q∑

i=r

(
q

i

)
(c)i(1 − c)q−i+1 (14)

α↓ =
q∑

i=r

(
q

i

)
(1 − c)i(c)q−i+1, (15)

whereases probabilities that the number of ↑-spinsons increases or decreases due to the
nonconformity depends on a type of nonconformity:
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Fig. 7 Illustration of the generalized q-voter model with the threshold r in the case of anticonformity (Mod-
els A and A′) and independence (Model B). At each elementary time step q spinsons are picked at random
and form a group of influence (q-lobby). Then the voter, on which the group can influence, is randomly cho-
sen. With probability p voter behaves like anticonformist or independent and with the probability 1 − p like
conformist. In this model conformity takes place if at least r spinsons in the q-lobby are in the same state. To
make the model as general as possible two types of anticonformity are proposed:
(A) The first type of anticonformity (Model A) is identical as in the q-voter model—it takes place only if the
q-lobby is homogeneous.
(A′) The second type, so called r-anticonformity (Model A′), acts in the same way as conformity—it takes
place if at least r spinsons in the q-lobby are in the same state.
(B) In a case of independent behavior, the voter does not follow the group, but acts independently—with
probability 1/2 it flips to the opposite direction.
To make the model reasonable from the social point of view we will consider r ∈ [
q/2�, q], where ceiling

x� is the smallest integer not less than x. For r = q the model reduces to the q-voter model presented in
Fig. 3. In such a case Model A is equivalent with A′ . For r = 
q/2� we deal with a kind of the majority
rule—at least half of the group has to be in the same state to influence the voter

(A′) In the case of r-anticonformity (see Model A′ in Fig. 7):

β↑ =
q∑

i=r

(
q

i

)
(1 − c)i+1(c)q−i , (16)

β↓ =
q∑

i=r

(
q

i

)
(c)i+1(1 − c)q−i . (17)

(A) In the case of anticonformity like in the original q-voter model (see Model A in Fig. 7):

β↑ = (1 − c)q+1, (18)

β↓ = cq+1. (19)

(B) In the case of independence (see Model B in Fig. 7):

β↑ = 1 − c

2
, (20)
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Fig. 8 Dependencies between steady values of concentration c and the level of the nonconformity p for the
model with anticonformity, r-anticonformity and independence in the case of the majority rule, i.e. r = 
q/2�.
As seen, in contrast to the q-voter model (i.e. r = q), results are qualitatively the same for all types of
nonconformity. In all three cases there is a continuous phase transition between states with and without
majority and the value of the transition point increases with q . This means that within majority rule we do
not observe, on the macroscopic scale, any qualitative differences between various types of nonconformity

β↓ = c

2
. (21)

Again we find the stationary values of concentration from the condition γ + − γ − = 0.

7.1 The Majority Case

We begin with presenting results for the majority case, i.e. for r = 
q/2� (see Fig. 8). It is
seen that dependencies between c and p for various types of nonconformity do not differ
as much as they did in the case of the q-voter model (see Fig. 6). In all three cases the
continuous phase transition between states with majority and without majority is observed.
Moreover, in all three cases the value of the transition point increases with the size of the
q-lobby.
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Fig. 9 Dependencies between steady values of concentration c and the level of nonconformity p for the
q-voter model with the threshold r for three types of nonconformity: anticonformity, r-anticonformity and
independence. In all cases q = 9 and the threshold r ∈ [
q/2�, q]. Although in all three cases there is a phase
transition, there are qualitative differences between three types of nonconformity. As usually, solid lines cor-
respond to the stable steady states and dotted lines, that are visible in a case with independence, denote
unstable steady states.
(A′) In the case with r-anticonformity the phase transition is continuous and p∗ decreases with r .
(A) In the case with anticonformity the phase transition is continuous and the critical point p∗ increases
with r .
(B) In the case of independence the phase transition changes its character from continuous
to discontinuous for q ≥ 6 and r ≥ r∗(q) that grows almost linearly with q . For example:
r∗(q = 6) = 6, r∗(q = 9) = 8, r∗(q = 12) = 10, r∗(q = 20) = 14 and approximately satisfies the equation
q = 1.8r∗ − 4.9

7.2 The General Case

Now we move to the general case with q > 0 and r ∈ [
q/2�, q]. Dependencies between c

and p for a fixed value of q = 9 and different values of r are presented in Fig. 9. In this
case results for three types of nonconformity are qualitatively different. As usually, there
is an order-disorder phase transition at p = p∗. However, the type of the phase transition
is different for independence than in the cases with anticonformity. For a critical value of
r = r∗(q), that scales almost linearly with q , the transition changes its type from continuous
to discontinuous. We should stress here that such a behavior is observed only for the size of
the q-lobby q ≥ 6. For q = 6 there is a discontinuous phase transition only for the threshold
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r = 6 (i.e. the case of the q-voter model). For the size of the lobby q = 7 still a discontinuous
phase transition is observed only for r = q = 7. For q = 9 a discontinuous phase transition is
observed for r = 8 and r = 9, i.e. r∗(9) = 8 and for q = 12 a discontinuous phase transition
is observed for r = 10,11,12, i.e. r∗(12) = 10. It is also seen in Fig. 9 that the value of
the phase transition point p∗ between state with majority (i.e. c 
= 0.5) and without majority
(c = 0.5) increases for r-anticonformity and decreases for anticonformity and independence.
This can be understood also heuristically and we will return to this issue later.

8 The Phase Diagrams for the Generalized q-Voter Model

In Figs. 6, 7, 8 and 9 we have presented dependencies between stationary values of con-
centration and the level of nonconformity. As has been already noted in [28] both types
of nonconformity, anticonformity and independence, tend to be effective in differentiating
people from others. Indeed, within our model, all three types of nonconformity lead to the
phase transition between consensus and stalemate (in a sense that there is no majority in the
system).

However, the type of the phase transition and the dependence between the critical value
p∗ and parameters q, r depends strongly on the type of nonconformity. Therefore, to sum-
marize all results we construct and discuss the phase diagrams for all types of nonconfor-
mity. The critical value of nonconformity, below which there is a majority in the system, can
be calculated as:

p∗ = α↑ − α↓
α↑ − α↓ − β↑ + β↓

, (22)

where α↑, α↓ are given by Eq. (15) and β↑, β↓ are given by Eqs. (19), (17), (21) respectively
to the type of nonconformity. Intentionally, we do not present here any calculations, since
the paper is intended to be available for a wide range of readers. However, the procedure is
the same as in the case of the q-voter model, for which detailed calculations can be found
in [10].

8.1 The Special Cases—Unanimity and Majority

Let us start with two special cases—‘unanimity’ (i.e. r = q) and ‘majority’ (i.e. 
q/2�).
These two cases are particularly simple because r is uniquely determined by q and there-
fore the critical value of nonconformity p∗ depends only on the single parameter q . Phase
diagrams for these cases are presented in Fig. 10. As already seen in Figs. 6 and 8:

– In the case of the majority the critical value p∗ grows with q for all three types of non-
conformity. The phase transition is continuous for arbitrary value of q ≥ 2.

– In contrast, in the case of the ‘unanimity’ (r = q) the critical value of nonconformity p∗
increases for anticonformity and decreases for independence.

Moreover, in the case of independence there is a discontinuous phase transition for
q ≥ 6, which is denoted by a region of a coexistence. In the coexistence region one of two
phases (with or without majority) is metastable and the second one is stable.

The system can reach metastable state but larger fluctuations can easily derive the
system from this state. Therefore, the probability of reaching such a state is lower than
probability of reaching the stable state. At the transition point, denoted in Fig. 10 by the
dashed line—both states are equally probable, i.e. both states are stable.
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Fig. 10 Phase diagrams for the model with the majority rule, i.e. r = 
q/2� (upper panels) and the q-voter
model, i.e. r = q (bottom panels).
(A′) For r-anticonformity the majority is equivalent to unanimity. There is a continuous phase transition and
the critical value p∗ grows with q . In this case the majority is equivalent to unanimity.
(A) For anticonformity in both cases there is a continuous phase transition and the critical value p∗ increases
with q .
(B) For independence, in the case of the majority the critical value p∗ increases with q , whereas in the case
of the ‘unanimity’ (r = q) decreases. Moreover, in the case of independence there is a discontinuous phase
transition for q ≥ 6, which is denoted by a region of a coexistence. In the coexistence region one of two
phases (with or without majority) is metastable and the second one is stable. The system can reach metastable
state but larger fluctuations can easily derive the system from this state. Therefore, the probability of reaching
such a state is lower than probability of reaching the stable state. At the transition point, denoted in Fig. 10
by the dashed line—both states are equally probable, i.e. both states are stable

Results presented up till now have shown that:

• The difference between anticonformity and independence, that is introduced on the mi-
croscopic (psychological) level, can influence the behavior on the macroscopic (society)
scale.

• Within the presented model, the macroscopic behavior of the system is much richer if
we assume that the social influence takes place in the case of unanimous instead absolute
majority.

8.2 The General Case

Now we construct the phase diagram in the general case in which r ∈ [
q/2�, q]. In such a
case the critical value p∗ depends on two parameters q and r . Therefore, we fist present the
phase diagram for a chosen fixed values of q = 15 and q = 20 (see Fig. 11). We have chosen
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Fig. 11 Phase diagrams for the generalized q-voter model with a threshold r for the fixed values of q = 15
(upper panels) and q = 20 (bottom panels). Qualitative differences are seen between three types of noncon-
formity:
(A′) There is a continuous phase transition in the case of r-anticonformity (Model A′ in Fig. 7) and the criti-
cal value of p decreases with r .
(A) For anticonformity (Model A in Fig. 7) the phase transition is also continuous but the critical value of p

increases with r .
(B) In the case with independence (Model B in Fig. 7) the critical value of p decreases with r and the transi-
tion changes its character from continuous to discontinuous

these values of q just as an example—the complete 3-dimensional phase diagram is far less
legible. Qualitative differences are seen between three types of nonconformity:

(A′) There is a continuous phase transition in the case of r-anticonformity (Model A′ in
Fig. 7) and the critical value of p decreases with r .

(A) For anticonformity (Model A in Fig. 7) the phase transition is also continuous but the
critical value of p increases with r .

(B) In the case with independence (Model B in Fig. 7) the critical value of p decreases
with r and the transition changes its character from continuous to discontinuous.

The dependence between a critical value of p and parameter r can be not only calculated
analytically or numerically but also heuristically explained:

(A′) For a given size of the lobby q r-anticonformity decreases with r faster than con-
formity. While conformity takes place if r spinsons inside the q-lobby are parallel,
r-anticonformity demands r + 1 parallel spinsons.

(A) Anticonformity takes place only if q + 1 spinsons are parallel, i.e. does not depend
on r . On the other hand conformity is decreasing with increasing r because when r

grows it becomes unlikely to find r parallel spinsons inside the q-lobby. Therefore, p∗
should decrease with r , what is indeed observed.
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Fig. 12 Phase diagrams for the generalized q-voter model with a threshold r for the fixed values of r = 15
(upper panels) and r = 10 (bottom panels). Qualitative differences are seen between three types of noncon-
formity:
(A′) In the case of r-anticonformity there is a continuous order-disorder transition and the critical value of p

decreases with q .
(A) For anticonformity there is no phase transition—the system is ordered for arbitrary value of q .
(B) Finally, in the case with nonconformity the critical value of p increases with q and the transition changes
its character from discontinuous to continuous

(B) It is also easy to understand why p∗ decreases with r in the case of independence—this
type of nonconformity does not depend on the state of q-lobby. On the other hand, as
explained above, conformity is decreasing with increasing r .

Now we investigate the dependence p∗(q) for a fixed value of r . In Fig. 12 the phase
diagram is presented for a sample values of r = 10 and r = 15. Again, qualitative differences
are seen between three types of nonconformity:

(A′) In the case of r-anticonformity there is a continuous order-disorder transition and the
critical value of p decreases with q .

(A) For anticonformity there is no phase transition—the system is ordered for arbitrary
value of q .

(B) Finally, in the case with nonconformity the critical value of p increases with q and the
transition changes its character from discontinuous to continuous.

Again, we can try to understand heuristically dependencies between critical values of p

and parameter q:

(A′) For a given r conformity is increasing with q , since it is easier to find r parallel spin-
sons in the q-lobby if q is larger. Obviously r-anticonformity, similarly to conformity,
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becomes more probable with increasing q . The question is which force, conformity or
r-anticonformity, grows faster with q . It can be easily checked that r-anticonformity
gain more with q because it takes place if at least r + 1 spinsons are parallel among
q + 1, whereas conformity takes place if at least r spinsons are parallel among q .
Therefore p∗ decreases with q in this cases.

(A) Far less intuitive is the case with anticonformity. It is obvious that anticonformity de-
creases with q because it takes place only if q + 1 spinsons are parallel. Therefore
we have a competition of two forces—conformity increases with q and anticonformity
decreases. It occurs that this competition results in constant value of p∗ = 1—i.e. for
any value of q there is a majority in the system.

(B) Because for a given r conformity is increasing with q it is easy to understand why
p∗ increases with q in the case of independence—this type of nonconformity does not
depend on the state of q-lobby.

9 Summary

The main goal of this paper was to examine how different types of nonconformity, intro-
duced on the microscopic level, manifest at the level of the society (i.e. macroscopic). More-
over, we wanted to check if results would be universal or rather model-dependent. To achieve
the goal we have introduced a generalized q-voter model. There are three parameters in the
model:

1. q—the size of the q-lobby, i.e. the size of a group of influence,
2. p—the level (probability) of nonconformity that can be one of two types—anticonformity

or independence,
3. r—the threshold needed for social influence (e.g. conformity takes place if at least r

spinsons among q are parallel).

All these parameters are important, but each for a different reason:

(q) By varying q , we can move from a linear voter model to a nonlinear voter models of
different orders (including Sznajd model for q = 2).

(p) p introduced a noise to the system—both types of nonconformity destroy order, al-
though each in a slightly different way. By varying p we move from the complete con-
sensus to the status-quo situation.

(r) The parameter r allows for the unification of several opinion dynamics models—e.g.
for r = 
q/2� we deal with the majority model and for r = q with the original q-voter
model. From this point of view the threshold r is not so important from the social point
of view, but is used rather to understand how details of the model (in this case the way
of introducing conformity) affect results. On the other hand it may be also connected
with the level of majority that is needed to persuade.

We would like to emphasize that we are aware of the fact that the parameter space for agent-
based models is much richer than the 3-parameter space used in this paper. However, our
aim was not to propose a possibly general model of opinion formation. We wanted to check
if the differences between independence and anticonformity, that were shown within the q-
voter model [10], would be visible if the conformity acted not only in the case of unanimity
but for example in the case of absolute majority or in other cases—and hence the idea of
introducing the threshold r into the q-voter model.
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Our calculations have shown that results depend significantly on parameters. In particu-
lar:

– For the majority rule, that corresponds to r = 
q/2�, there is a continuous phase transition
at p = p∗ between state with majority and status-quo for both types of nonconformity for
any value of q > 1. Moreover, for both types of nonconformity p∗ increases with the
size of the q-lobby. Therefore, differences between anticonformity and independence are
qualitatively indistinguishable on the macroscopic level under the majority rule.

– In the case of a q-voter model, that corresponds to r = q , there are significant differences
between two types of nonconformity. In the case of anticonformity there is a continuous
order–disorder phase transition at p = p∗ and the value of p∗ increases with the size of the
q-lobby. On the other hand, for the model with independence the value of the transition
point p∗ decays with q . Moreover, the phase transition in this case is continuous only for
q ≤ 5. For larger values of q there is a discontinuous phase transition—and coexistence
of ordered (with majority) and disordered (without majority) phase is possible.

– In the general case in which r and q are two independent parameters, the differences
between anticonformity and independence depends on r and q . Similarly as in the case
of the q-voter model there is a continuous phase transition in the case of anticonformity,
whereas in the case of independence the change of the transition’s type may appear de-
pendently on parameters r and q .

Above results suggests that differences between anticonformity and independence might be
significant or indistinguishable on the macroscopic level, depending on parameters of the
model. Therefore, we are able to answer fairly questions posed in the Introduction:

1. Differences between two types of nonconformity, that are recognized by social psychol-
ogists on the individual (microscopic) level, can manifest on the society (macroscopic)
level within some models. For example there are significant differences between anticon-
formity and independence in the q-voter model in which unanimous majority is required
for the social influence. Analogous results are obtained in the case when the threshold
r , needed for a social influence, is high enough, which can be understood as an almost
unanimous majority.

2. Differences between anticonformity and independence, that manifest on the macroscopic
level, are not universal. They depend on the model designs. For example in a case of
majority rule two types of nonconformity are qualitatively indistinguishable.

Above answers, although complete the goal of the paper, raise further important questions
related to the value and validity of opinion dynamics models. Differences on the macro-
scopic level, that were shown in this paper, may indicate which microscopic model is cor-
rect, and which one should be rejected. However, to judge which macroscopic behavior is
adequate in the real social system might be very hard or maybe even impossible. It would be
extremely valuable if one could design and conduct the social experiment which could show
differences between anticonformity and independence on the macroscopic level. So far, we
can only conclude that the social behavior, even in seemingly simple world of spinsons, is
surprisingly complex.
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the exit probability exponent α depends both on the parameter q as well as the 
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1.  Introduction

Describing opinion dynamics has inspired many physicists to build models that could not 
be justified by physical phenomena (for a review of opinion dynamic models see [1, 2]). 
Such models are usually more caricatures than precise portraits of real social systems. 
However, far-reaching simplifications should not be regarded as a defect of these models. 
Simplicity allows not only for in-depth analysis but also for analytical treatment. First of 
all it allows us to describe some universal features or even to determine the most impor-
tant factors that influence a given social phenomenon.

Certainly, the main challenge that persists with opinion dynamics models is the 
describing of complex social systems in terms of a relatively simple approach. On the 
other hand, such models are themselves interesting from a theoretical point of view [3]. 
Therefore they might be also treated as small building blocks which make a contribution 
to the construction of still emerging non-equilibrium statistical physics. A good example 
of such an interesting model is the nonlinear q-voter model introduced in [4] along with 
its modifications proposed in [5, 6]. The precise definition of the model will be given in 
the next section. For now, what is important is the fact that in the q-voter model only a 
unanimous group of q neighbors can influence a voter. Hence this model is a simple gen-
eralization of the linear voter model [3]. In this paper we will investigate a special case of 
a model, which we call the q-voter model with deadlocks, considered already in [5] for a 
one dimensional lattice. We examine the role of a topology in such a model and show that 
increasing randomness and density of a network helps us to reach a consensus.

The second motivation for this paper came from a recent controversy on the exit 
probability E(p) (i.e. the probability that the system ends up with all spins up starting 
with the p fraction of up-spins) for the q-voter model with deadlocks. It has been shown 
independently in five papers [5, 7–10] that for q = 2, which corresponds to the Sznajd 
model, the exit probability can be described by the following formula:

=
+ −

E p
p

p p
( )

(1 )
.

2

2 2� (1)
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However, in [11] it has been suggested that the above result is valid only for finite-size systems 
and should approach a step-like function for the infinite system. It should be stressed that the 
suggestion that appeared in [11] was taken seriously and considered by others [5, 10] because 
the formula (1) was obtained by some approximation (different variants of the mean-field 
approach). The difficulties of finding the exact solution arise from the fact that the average 
magnetization in the q-voter model is not conserved. In [7, 8] an approximate solution was con-
structed by truncating the hierarchy of the rate equations of higher-order correlation functions 
by a decoupling scheme, known as Kirkwood approximation [12]. On the other hand, results 
obtained in [5, 7–9] suggest that there is no finite size dependence for E(p) in the case of the one-
dimensional lattice. Recent results obtained by Timpanaro and Prado [10] for large lattices con-
firm the result given by (1) and indicate that the step-like function corresponds to the complete 
graph. It would seem, therefore, that the ambiguity associated with the exit probability for the 
q-voter model is explained. However, this is true only for q = 2 on the one-dimensional lattice.

For a higher value of q and different network structures the problem is still open. It 
has been suggested in [5] that the exit probability on a one-dimensional lattice for some 
arbitrary value of q is given by the formula:

=
+ −

E p
p

p p
( )

(1 )
.

q

q q� (2)

However, recent results [10] suggest that this might be valid only for small lattices in 
case of q > 2. We will examine this problem in this paper for different values of q and 
different network structures.

2. Model

The original q-voter model introduced in [4] on the one dimensional lattice has been 
defined as follows:

•	 Each i-th site of a graph of a size N is occupied by a voter Si = ± 1

•	 Initially there is a probability p of finding a voter in a state  + 1 and a probability 
1 − p of finding a voter in a state  − 1

•	 The system evolves according to the following algorithm:

(a)	 At each elementary time step t, choose one spin Si, located at site i, at 
random

(b)	 Choose q neighbors (q-panel) of site i

(c)	 If all q neighbors are in the same state then Si takes the same state as its 
neighbors

(d)	 Otherwise, if the q neighbors are not unanimous then take Si → − Si with 
probability ϵ

(e)	 Time is updated → +t t
N

1
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In [5] it was proposed to study a one-dimensional model with ϵ = 0, which for q = 2 corre-
sponds to the Sznajd model. It should be noted that for ϵ = 0 the evolution of the system 
is hampered due to the existence of deadlock configurations. Deadlocks should be under-
stood as configurations in which there is no possibility of an evolution due to the lack of 
a unanimous q-panel. In the case of a one dimensional lattice and q = 2 there is only one 
deadlock configuration—an antiferromagnetic state  + − + − + .... For q = 3 there are 
already many more, e.g.  + − + − + − , ...,  + + – + + – + + ... or  + + − + − + + − + ..., 
etc. However, if initially there is at least one q-panel, evolution will reach one of two 
final absorbing states. The nonlinear q-voter model with deadlocks has been found to 
be interesting for several reasons:

•	 For q = 2 it reduces to the Sznajd model for opinion dynamics and in this case 
the analytical formula for an exit probability has been found independently by 
[7–9, 11]

•	 The exit probability does not depend on a system size as reported by [5, 7–9]. 
This result should be treated with caution, taking into account recent results 
obtained by [10] for large lattices. It seems that additional simulations are needed 
to explain this contradiction.

•	 In a case of random noise, a system undergoes a phase transition which changes 
its type from continuous to discontinuous at q = 5 [6].

To investigate the role of the network topology we have decided to use the model intro-
duced by [14], mainly because it allows us to study various structures—from regular 
lattices with different sizes of neighborhood, through small-world networks to random 
graphs. The Watts–Strogatz (WS) algorithm, that we have used, is defined as follows:

•	 Start with a 1D lattice of size N with periodic boundary conditions in which each 
node is connected to its 2k neighbors

•	 Then with probability β replace each edge by a randomly chosen edge

For β = 0 we deal with regular lattices—e.g. for k = 1 we have a simple one-dimensional 
lattice with interactions only to the nearest neighbors, and for k = (N − 1)/2 we have a 
complete graph. With increasing β we increase the randomness of the network going 
through the small-world (for β = 0.01 − 0.1) to the random graph for β = 1. Summarizing, 
we have one parameter q that defines the model itself and two parameters k and β that 
describe the network properties.

3. Results

3.1. Exit probability on a complete graph

An important property of a system with absorbing states is the so-called exit probabil-
ity [3]. In our case the exit probability E(p) should be understood as a probability of the 
absorbing state with all spins ‘ + 1’ as a function of the initial probability p of finding 

http://dx.doi.org/10.1088/1742-5468/2014/07/P07018
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a spin in a state  + 1. For a complete graph, which corresponds also to the mean-field 
treatment, the evolution of the probability of ‘up’-spins is given by:

∆+ = + − − −p t t p t p t p t p t p t( ) ( ) ( ) (1 ( ) ) (1 ( ) ) ( )q q
� (3)

Fixed points can be easily found from the condition p(t + Δt) = p(t) = p*, i.e.:

− − − = − − − =− −* * * * * * * *p p p p p p p p( ) (1 ) (1 ) (1 ) [( ) (1 ) ] 0.q q q q1 1
� (4)

As can be seen there are three fixed points p* = 0, 1/2, 1. This can be easily checked by 
calculating the following derivative:

+ − − − | = *p
p p p p p

d

d
( (1 ) (1 ) ) ,q q

p p� (5)

where p* = 0 and p* = 1 are stable, but p* = 1/2 is an unstable fixed point. Therefore on 
a complete graph for p < 1/2 the system eventually reaches the absorbing state p* = 0, 
and for p > 1/2 the system reaches p* = 1. This means that the exit probability for the 
q-voter model on the complete graph with arbitrary value q is a step-like function:

=





<
>

E p
p

p
( )

0 for 1 / 2

1 for 1 / 2
� (6)

Timpanaro and Prado have recently proposed a much more rigorous approach to show 
that the exit probability is a step-like function for a complete graph [10]. Their and our 
results confirm that the results obtained by [15] within a unifying frame (GUF) coin-
cides with the mean-field approach and may not be true for arbitrary topology.

3.2. Results on regular graphs

For β = 0, a broad class of WS networks reduces to regular graphs with various sizes of 
neighborhood given by k. In this section we examine the role of k which from a social 

Figure 1. Exit probability (left panel) and exit time (right panel) as a function 
of the initial probability p of spin  + 1 for q = 2 (which corresponds to the Sznajd 
model) and β = 0 (regular graph) for several sizes of the neighborhood given by k. 
The system size N = 100 and results were averaged over 104 samples. Solid lines 
on the left panel correspond to the analytical formula given by equation (7). The 
steepness of the exit probability slope increases with k, and exit time significantly 
decreases with k.
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point of view measures the density of the social group. In particular we would like to 
answer the following questions:

(a)	 How does parameter k influence the exit probability? Results on a complete graph 
suggest that exit probability should become steeper with increasing k.

(b)	 How does k influence exit time, i.e. is a consensus reached faster for smaller or 
larger values of k?

(c)	 How do the results scale with the system size for k > 1? For k = 1 no finite size 
dependence has been noted in one-dimensional voter, Sznajd and q-voter models 
[5, 7–9], as well as several Ising-like models with so-called inflow dynamics [13].

In agreement with our predictions, it is seen in figure 1 that the steepness of the exit 
probability slope increases with k. This was expected because we have found that for 
k = (N − 1)/2 (complete graph) E(p) is a step-like function. It is also the case that for q = 2 
and arbitrary value of k simulation data can be fitted by (see the left panel in figure 1):

=
+ −

α

α αE p
p

p p
( )

(1 )
,� (7)

Figure 2. Exit probability (top panels) and exit time (bottom panels) as a function 
of the initial probability p of spin  + 1. In the left panels results for q = 2, k = 4, 
β = 0 and several system sizes N = 100, 200, 400, 800, 1600 are presented. In the 
right panels a comparison between the results for q = 2, k = 8 with q = 4, k = 4 are 
presented.
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where α = k/2 + 3/2. Parameter k also influences exit time, which should be understood 
as the time needed to reach an absorbing state [3]. As seen the exit time significantly 
decreases with k, which means that consensus is reached faster in more dense societies.

One of the most interesting questions is related to the finite-size effects. All previ-
ous results [5, 7–10] show that the exit probability does not depend on the system size 
for q = 2 on a one-dimensional lattice. Interestingly, analogous results have been very 
recently obtained for a larger class of Ising-like models—no finite size dependence in 
the exit probability has been found [13]. In figure 2 we present the exit probability and 
exit time as a function of the initial probability p of spin  + 1 for q = 2, k = 4, β = 0 and 
several system sizes N = 100, 200, 400, 800, 1600. It is seen that the exit probability 
does not depend on the system size. It is also seen that the exit time (EP) nearly scales 
with the system size as L − 2, though the scaling relation is not exact, in contrast to 
the voter and Sznajd models on a one-dimensional lattice with k = 1 [8]. Interestingly, 
a comparison between the results for q = 2, k = 8 and q = 4, k = 4 that are presented in 
the right panels of figure 2 suggests that the exit probability depends on kq, instead of 
two parameters k and q. This conjecture has been examined for other values of k and q 
(see figure 3).It can be seen in figure 3 that the relation EP (q, k) = EP (qk) is roughly 
valid.On the other hand, the exit time (or in other words the consensus time) clearly 
decreases with k. One might expect that the exit time for different system sizes could 
be somehow rescaled by k, for example τ(k, N) = τ(k/N). To check this expectation we 
have conducted simulations for several values of q and ten pairs (k, N), for k/N = 100 
and N = 100, 200, ..., 1000. Unfortunately, no simple relation has been found.

3.3. Results on a WS graph

We now investigate the model on a WS graph for β = 0.01 and different values of k and q.  
Similarly as for β = 0, the steepness of the exit time increases both with q and k, and 
the exit time strongly decreases with k (see figure 4). However, contrary to EP for β = 0, 

Figure 3. Exit probability (left panel) and exit time (right panel) as a function of 
the initial probability p of spin  + 1 for several values of q and k, such as kq = 24 
for β = 0 (regular graph). The system size N = 400 and results were averaged over 
103 samples. It is seen that the exit probability in all cases is almost identical and 
therefore one could conclude that it depends mainly on kq, although this is not an 
exact dependence. Exit time generally decreases with k, as has been already shown 
in figure 1.
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finite-size effects are clearly seen for any value of q (see figure 5). Using the finite-size 
technique we were able to determine the scaling exponent ν. As usual, we choose the 
scaling variable x = (p − p*)N1/ν [16], where ν is the critical exponent describing the cor-
relation length and p* is the critical value, i.e. in our case p* = 0.5. In figure 5 we present 
results for q = 2 and two values of k. Data for different system sizes N = 100, 200, 400, 
800, 1600 collapse into a single curve, though the scaling exponent is not universal and 
depends on the network structure.

Now we are ready to examine the role of the second parameter, which describes the 
level of randomness i.e. β.

In figure 6 we present results for k = 4, q = 4 and two system sizes N = 100, 800 for 
several values of β. First of all, it is seen that the steepness of the exit probability 
slope increases and simultaneously the exit time decreases with β. However, it is seen 
that the EP for the small system N = 100 differs from the one for the larger system 
(N = 800). The dependence between the system size N and EP is much weaker for q = 2 
than for larger values of q. This is an interesting result taking into account results 
obtained recently by [10]. For regular lattices, i.e. β = 0, the dependence between the 
exit probability and the system size was very difficult or even impossible to observe. 
Only results on the very large system sizes (105–107), that required redefinition of the 
simulation algorithm as proposed in [10], have shown a small dependence on the system 
size for q > 2. For the system sizes investigated in this paper, i.e. L = 100, 200, 400, 800, 

Figure 4. Exit probability (left panels) and exit time (right panels) as a function 
of the initial probability p of spin  + 1 for q = 2 (upper panels) and q = 4 (bottom 
panels) for β = 0.01 (small-world). The system size N = 100 and results were 
averaged over 103 samples.
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1600, this dependence was almost invisible. However, for β > 0 the difference between 
results for q = 2 and q > 2 are very clear (see upper panel in figure 6).

The second interesting result is related to the exit (consensus) time. Results are 
presented on a semi-log scale (bottom panel in figure 6) to allow for the comparison 
between different values of β. The exit time clearly decreases with increasing random-
ness of the network. A similar result has been found in the case of a linear voter model, 
which corresponds to q = 1— for networks of finite size the ordering process takes a time 
shorter than on a regular lattice of the same size [17]. Certainly shorter paths help to 
reach consensus faster, although our research does not allow us to determine if this 
is the only property of the network which helps to achieve a consensus. Probably the 
effect of the network structure is more complex.

4. Discussion

We have investigated a special case of a q-voter model (with ϵ = 0) on a WS network 
described by parameters k and β. We have shown that the exit probability is the 

Figure 5. Exit probability as a function of the initial probability p of spin  + 1 for 
q = 2 and β = 0.01 for several lattice sizes. Original results are presented in upper 
and rescaled results in bottom panels. It is seen that the scaling exponent depends 
on parameter k. As will be discussed further in the paper, the scaling exponent 
depends also on q and β.
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S-shaped function for arbitrary values of parameters q, k and β and can be fitted by an 
analytical formula (7).

It should be recalled that even for β = 0, k = 1 and q = 2 only approximate calcu-
lations are available, although surprisingly four independent analytical approaches 
[7–9, 11] give exactly the same result (1) which is in perfect agreement with Monte 
Carlo results [5, 10].

In the case of heterogeneous networks, i.e. for β > 0, one could try to apply a powerful 
technique known as the heterogeneous mean-field (HMF) approach. Recently HMF has 
been applied to the q-voter model without deadlocks (i.e. for ϵ > 0) [18]. It has been argued 
that for q = 2 and any network structure, the application of HMF leads to the trivial result 
as long as ϵ = 1/2. In such a case the flipping probability f(x) = xq + ϵ[1 − xq − (1 − x)q]  
is a linear function of the fraction x of neighbors in the opposite state. For values of 
q > 2, the application of HMF is hampered by the nonlinearity of evolution equations, 
even if one considers the system only for the critical value of ϵ, i.e. without the drift 
term [18]. The case with ϵ = 0 is already difficult for q = 2, as mentioned in the intro-
duction and discussed in [7, 8], not only because of non-linearity but also because of 
the presence of a drift term in the evolution equation. Therefore, deriving an analytical 
formula (7) is a challenge for the future.

Another task that could be considered in the future is the exact relation between 
the finite-size scaling exponent ν and the parameters of the model. Here, it has been 
found that for β = 0, q = 2 and some arbitrary value of k the exit probability does not 

Figure 6. Exit probabilities (upper panels) and exit times (bottom panels) as a 
function of the initial probability p of spin  + 1 for q = 4, k = 4 and several values of 
β. Right panels correspond to N = 100 and left panels to N = 800.
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depend on the system size. The finite-size effects are also almost invisible for larger 
values of q, but recent results for very large lattices [10] suggest we be careful with the 
formulation of final conclusions. Our caution is also dictated by the results for β > 0, 
which have shown that for q = 2 EP depends much less on the system size than for 
q > 2. Nevertheless, taking into account the results obtained in this paper and earlier 
papers [5, 10] we may safely say that for β = 0 and the arbitrary values of q and k the 
finite-size effects are very weak. This agrees also with recent results for the broad class 
of Ising-type models. Roy et al [13] have investigated the exit probability in several one 
dimensional Ising-like models with so-called inflow dynamics, such as the Ising–Glauber 
model at temperature T = 0. Using Monte Carlo simulations they have found that a 
general form for the exit probability is given, as in our case, by equation (7), where the 
exponent α depends on model details (range of interactions, asymmetry or fluctuations 
present in a given dynamics). Moreover, they have shown that for the inflow dynamics 
in one dimension, the exit probability does not depend on the lattice size. However, for 
β > 0 the finite-size analysis provides much less trivial results. Using finite-size scaling 
technique we were able to determine scaling exponents ν for several sets of parameters 
(q, k, β), though the general dependence is not yet uncovered.

Summarizing, up till now the q-voter model with deadlock has been investigated 
only on the one-dimensional lattice with nearest neighbors. Here we have examined 
both the role of the density of the network given by k and its randomness character-
ized by β. We have been able to show that the exit time decreases with k and β. From 
a social point of view this means that the consensus is reached faster in societies with 
larger numbers of links and shorter paths. Moreover, we were able to show that, for any 
values of parameters, the exit probability can be described by the general relation (7), 
with the exponent α that depends on model parameters analogously, as in case of Ising-
like models with inflow dynamics [13]. Interestingly, it became apparent that, for β = 0 
and arbitrary values of q and k, the EP does not depend on the system size or depends 
very weakly for q > 2. On the contrary, for β > 0 non-trivial finite-size scaling has been 
found. Although we leave some problems open, as stressed above, we believe that our 
paper will contribute to the understanding of non-equilibrium phenomena and opinion 
spreading on networks. On the other hand we hope that the question posed here will 
motivate others to study q-voter models with deadlocks more deeply.
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Is the Person-Situation Debate Important for
Agent-Based Modeling and Vice-Versa?
Katarzyna Sznajd-Weron1*, Janusz Szwabiński2, Rafał Weron3

Abstract

Background: Agent-based models (ABM) are believed to be a very powerful tool in the social sciences, sometimes even
treated as a substitute for social experiments. When building an ABM we have to define the agents and the rules governing
the artificial society. Given the complexity and our limited understanding of the human nature, we face the problem of
assuming that either personal traits, the situation or both have impact on the social behavior of agents. However, as the
long-standing person-situation debate in psychology shows, there is no consensus as to the underlying psychological
mechanism and the important question that arises is whether the modeling assumptions we make will have a substantial
influence on the simulated behavior of the system as a whole or not.

Methodology/Principal Findings: Studying two variants of the same agent-based model of opinion formation, we show
that the decision to choose either personal traits or the situation as the primary factor driving social interactions is of critical
importance. Using Monte Carlo simulations (for Barabasi-Albert networks) and analytic calculations (for a complete graph)
we provide evidence that assuming a person-specific response to social influence at the microscopic level generally leads to
a completely different and less realistic aggregate or macroscopic behavior than an assumption of a situation-specific
response; a result that has been reported by social psychologists for a range of experimental setups, but has been
downplayed or ignored in the opinion dynamics literature.

Significance: This sensitivity to modeling assumptions has far reaching consequences also beyond opinion dynamics, since
agent-based models are becoming a popular tool among economists and policy makers and are often used as substitutes of
real social experiments.
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Introduction

Agent-based models (ABM) are believed to be a very powerful

tool in many disciplines [1–8]. Traditionally this kind of approach,

that takes into account how individuals interact, was the domain of

statistical physics [9]. Physicists were able to describe complex

collective phenomena (e.g. phase transitions) as a result of

microscopic interactions [10,11]. The models used by statistical

physicists were rather simple, usually not because the physical

reality was simple but because simple models were much easier to

deal with and able to describe universal features. Moreover, within

simple models it is possible to assess what microscopic factors are

the most important from the macroscopic point of view. Agent-

based models that are nowadays used in other disciplines are often

more complicated, although the seminal model proposed by

Thomas Schelling [12] to describe spatial segregation in societies

was as simple as the simplest models in statistical physics can get. It

is not the aim of this article to discuss if agent-based models have

to be simple or not. It is obvious that a model should be designed

to describe the problem at hand and this will determine the level of

complexity [2]. However, the fundamental question that arises in

all applications is how to introduce interactions.

Even if we consider only the simplest models of opinion

formation – in which opinions are represented by binary variables

and in which social influence is limited to conformity – we can find

in the literature a number of competing and commonly used

approaches, including the voter model [9,13], the majority rule

[14,15], the Sznajd model [16] and Glauber-type opinion

dynamics [17]. There have been also a few attempts at unifying

these models. The first one was proposed by Galam and is

presently known as the general sequential probabilistic model [18].

In 2009 the q-voter model was introduced [19] and it includes the

voter and Sznajd models as special cases. In 2013 yet another

generalization of the q-voter model was proposed [20]. Interest-

ingly, the q-voter model belongs to the broad class of so-called
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threshold models [21], which have gained considerable popularity

in the social sciences.

Even greater confusion prevails if different types of social

influence are considered, such as conformity, nonconformity,

anticonformity, etc. An extended discussion of these issues can be

found in [20]. Let us only briefly mention that the presence of

zealots [22], inflexibles [23], experts [5] or independent agents

[20] significantly changes the output of the model and introduces

phase transitions [24]. Moreover, in some papers a nonconformist

behavior is introduced as an individual trait [22,23], whereas in

other as a situational factor [20,24–27]. This raises the question of

the role of ABMs. Certainly some of them are just interesting in

themselves and can be investigated from the point of view of basic

research, in the domain of non-equilibrium statistical physics [9].

However, the ultimate objective of opinion dynamics ABMs is (or

at least should be) making them applicable in the social sciences.

But if so, the models should be based on realistic assumptions.

These considerations nicely lead us to two questions which have

been the motivation for this paper:

1. Micro level: What determines human behavior – personal traits

or rather the situation?

2. Macro level: Do the modeling assumptions we make regarding

social interactions (personal traits vs. situation) have substantial

impact on the simulated behavior of the system as a whole or

not?

Obviously answering the first question lies beyond the domain

of physics. In fact, among psychologists there has been a

longstanding and vigorous discussion on this topic, known as the

person-situation debate. The debate started in the late 1960s and

recently has been announced to be over (for a review see the

special issue of the Journal of Research in Personality [28]). On the

other hand, there is still a lot of controversy around the subject.

For instance, some psychologists argue that the debate is an

academic problem because the concept of situation is not well

defined or the questions in the debate are poorly posed.

Nevertheless, intuitively the subject of the debate is quite clear

and relatively easy to describe with agent-based modeling. It seems

that nowadays most psychologists agree that both, the situation

and personal traits, influence human behavior and such an

approach is also visible in some ABMs [29]. The problems that are

still under consideration in the literature are rather related with

the question what factors and when are more important [30–32].

It is not the aim of this paper to solve one the most significant

debates in the history of psychology. For us, the debate is an

excellent excuse for a closer look at some fundamental problems in

the area of agent-based modeling. On the other hand, the results

obtained within agent-based modeling may shed some light on the

debate itself.

Let us now focus on the second question. Certainly the debate is

very important for psychologists but it is also important from the

macroscopic or societal point of view? Imagine that we have a

group of 1000 people and consider two approaches. In the first

approach 100 individuals are independent, i.e. act independently

of the social influence, and the remaining 900 are conformists, i.e.

follow the behavior of other group members. In the second

approach each member of a group acts independently with

probability 0.1 and conforms with probability 0.9. The expected

value of the independent behavior in both approaches is exactly

the same. A first guess would most likely be that no differences

between the two approaches will be visible on the macroscopic

scale. And this indeed is the reply one of us (KSW) was giving

when asked on different occasions. Only recently have we realized

that this problem – while very difficult, if possible at all, to solve via

social experiments – can be easily addressed within a microscopic

agent-based model.

Methods

To investigate the above issue we use q-voter models, which

have been originally proposed as situation-oriented [20] but can

Figure 1. Sample Barabasi-Albert network structures for different densities of links, represented by parameter M. The agents are
described by a single binary variable and called spinsons to reflect the dyadic nature of the agent (spin) and the object of study (person). The spinson
size is proportional to the number of outgoing links, the color (and simultaneously orientation) represent the binary opinion.
doi:10.1371/journal.pone.0112203.g001
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be easily reformulated to become personality-oriented. We set

q~4 to reflect the empirically observed fact that a group of four

individuals sharing the same opinion has a high chance to

’convince’ the fifth, even if no rational arguments are available

[33,34]. The agents in our models are described by a single binary

variable, which may correspond to ’yes’ or ’no’ in the field of

opinion dynamics or ’adopted’ and ’not adopted’ when modeling

innovation diffusion. For such a simple agent, Nyczka and Sznajd-

Weron [20] have recently introduced the name spinson, which

reflects the dyadic nature of the agent (spin) and the object of study

(person), see Fig. 1. We use this name throughout the paper as it

nicely allows to go around gender issues. It should be also

emphasized that models like the one discussed here are

particularly useful in the field of diffusion of innovation [6,8,35].

Hence, in the remainder of the paper we use the ’innovation

diffusion’ language.

Interactions between spinsons are very simple, although based

on empirical evidence (as reported by social psychologists [34]).

Like in [36], in each time step a group of four connected spinsons

is chosen and if the group unanimously shares an opinion it will

influence one neighbor, which can behave like a conformist (i.e.

take the opinion of the group) or act independently. In the case of

independent behavior, with probability f the spinson changes its

opinion and with 1{f stays with the current opinion. Parameter f
represents flexibility; to calibrate the model to reality it may be set

equal to the level of conservatism in the society [37,38]. Such a

simple model can be easily formulated as situation-oriented or

personality-oriented. In the first case – let us call it situation – an

agent acts independently with probability p and follows the group

with probability 1{p. As a result, each spinson can sometimes

behave independently and sometimes conform with the group. In

the second approach or model – dubbed person – a fraction p of

spinsons in the society are independent. The expected value of

independent behavior is exactly the same in both approaches and

therefore the first guess could be that both models give the same

result on the macroscopic level.

Results

Monte Carlo simulations
We investigate both modeling approaches on Barabasi-Albert

networks, as they nicely recover most of the features of a real social

network [39]. We build the test network starting from a fully

connected graph of M nodes and then preferentially attach M new

nodes at each time step until the network achieves the assumed

number of nodes N. We then conduct Monte Carlo simulations. In

the initial state all spinsons are ’down’, which corresponds to the

situation prior to introducing the innovation (e.g. a tablet, a new

electricity tariff) when none of the agents is ’adopted’. Due to

independence some spinsons start to flip and then social influence

from a unanimous group of q~4 spins may influence a

neighboring (and connected) spinson. Eventually the system

reaches a stationary state in which concentration of adopted

fluctuates around some average value c~c(p,f ). As a result of

competition between social influence (an ordering force) and

independence (which introduces noise and disorders the system), a

phase transition appears in both models (see Fig. 2). For level of

independence pvp� there is a state in which a majority (cw0)

coexists with a minority and for pwp� a status-quo situation is

observed (c~0). Surprisingly, in the person model there is no

dependence on parameter f, which describes how often indepen-

dent spinsons change their opinion. On the other hand, f
influences the results significantly in the situation model (see the

top right panel in Fig. 2).

Figure 2. Concentration of adopted c in the stationary state as a function of independence p for the person (left column) and the
situation (right column) models. Simulation results are averaged over 1000 Monte Carlo runs and concern Barabasi-Albert networks of size
N~104 . In the top row the dependence on flexibility f is shown for M~4, in the bottom row the dependence on M is shown for f ~0:5. Note that
the results for larger values of M approach the results for the CG, see Fig. 3.
doi:10.1371/journal.pone.0112203.g002
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Not only flexibility is an irrelevant parameter in the person
model. Also the density of the network, represented by parameter

M, does not influence the results (see the bottom left panel in

Fig. 2). In the situation model the structure of the network is more

important, although with increasing M concentration c(p)
approaches a limiting case which coincides with the result

obtained for a complete graph. One could argue that the

differences between the two considered models are visible because

of the differences in network structures. However, to our surprise,

the results presented in the bottom panels in Fig. 2 suggest that the

differences appear even on a complete graph. Indeed, as can be

seen in the bottom panels, flexibility f is a redundant parameter in

the person model (left panel), but not in the situation model (right

panel).

Analytical calculations for a complete graph
In this section we will perform analytical calculations to answer

the intriguing question why the results for the two studied models

differ so much even on a complete graph. In a general complex

network setup, it is not easy to compute how the number of

adopted spinsons changes in time and what is the stationary state.

However, in the case of a complete graph this task is exceptionally

simple and corresponds to the method known in statistical physics

as the mean field approach (MFA; see e.g. [9]). On a complete

graph each spinson is connected with every other spinson and

therefore they are all neighbors. Hence, the system is completely

homogeneous in the sense that the local concentration of adopted

spinsons is statistically equal to the global concentration c(t).
Therefore we can write down the equation that describes the

evolution of the system.

Recall that in the person approach there are two groups of

agents and that the opinion dynamics in each of these groups is

different. Let N
:
1 (t) and N

;
1 (t) denote the number of adopted (q)

and unadopted (Q) independent spinsons at time t, respectively.

Then the total number of independent spinsons is constant in time:

N1~N
:
1 (t)zN

;
1 (t)~pN. Further, let N

:
2 (t) and N

;
2 (t) denote the

number of adopted (q) and unadopted (Q) conformists at time t,
respectively. Similarly, the total number of conformists is constant

in time: N2~N
:
2 (t)zN

;
2 (t)~(1{p)N. Finally, denote by

c1(t)~N
:
1 (t)=N the concentration of adopted independent

spinsons at time t and by c2(t)~N
:
2 (t)=N the concentration of

adopted conformists at time t; both are computed with respect to

the whole system size N. Note that the ratio of adopted spinsons

c(t)~c1(t)zc2(t)~fN:
1 (t)zN

:
2 (t)g=N.

In each elementary time step the number of adopted

independent spinsons N
:
1 (t) can increase by 1 only if: (i) an

independent spinson is drawn from the set of all spinsons (the

probability of this event is equal to N1=N), (ii) this spinson is

unadopted (with probability N
;
1 (t)=N1), and (iii) the spinson flips

(with probability f). Analogously, in each elementary time step

N
:
1 (t) can decrease by 1 only if: (i) an independent spinson is

drawn from the set of all spinsons, (ii) this spinson is adopted (with

probability N
:
1 (t)=N1), and (iii) the spinson flips. Therefore, we can

write the following evolution equation for the number of adopted

independent spinsons:

N
:
1 (tz1)~N

:
1 (t)z

N1

N

N
;
1 (t)

N1

f {
N1

N

N
:
1 (t)

N1

f ~N
:
1 (t)zf

N
;
1 (t)

N
{

N
:
1 (t)

N

( )

~N
:
1 (t)zf

pN{N
:
1 (t)

N
{

N
:
1 (t)

N

( )
~N

:
1 (t)zf fp{2c1(t)g: ð1Þ

Dividing both sides by N we obtain the evolution equation for

the concentration of adopted independent spinsons:

c1(tz1)~c1(t)z
1

N
f fp{2c1(t)g: ð2Þ

A similar reasoning can be conducted for the number of

adopted conformists. In each elementary time step the number of

adopted conformists N
:
2 (t) can increase by 1 only if: (i) a

conformist is drawn from the set of all spinsons (with probability

N2=N), (ii) this spinson is unadopted (with probability N
;
2 (t)=N2),

and (iii) all four chosen neighbors are adopted (the probability of

this event is approximately equal to c4(t)). Let us briefly comment

on the later statement. The exact value of the probability in (iii) is

equal to:

Figure 3. Concentration of adopted c in the stationary state as a function of independence p for the person (left) and the situation
(right) models on a complete graph (CG). Analytic results obtained by iterating formulas (5) and (6) for four values of flexibility f are denoted by
lines. For comparison, MC results for f ~0:5 (the same as in Fig. 2) are shown as stars. Except for the neighborhood of the critical point, the stars lie on
the dotted purple line. This slight discrepancy is caused by the fact that near the critical point very long simulation times are needed to reach the
steady state.
doi:10.1371/journal.pone.0112203.g003
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N
:
1 (t)zN

:
2 (t)

N{1
:N

:
1 (t)zN

:
2 (t){1

N{2
:N

:
1 (t)zN

:
2 (t){2

N{3
:N

:
1 (t)zN

:
2 (t){3

N{4
:

However, assuming that for kvvfN:
1 (t)zN

:
2 (t)g we can

approximate fN:
1 (t)zN

:
2 (t){kg by fN:

1 (t)zN
:
2 (t)g and for

lvvN we can approximate (N{l) by N, the probability in

(iii) can be approximated by

N
:
1 (t)zN

:
2 (t)

N

( )4

~c4(t):

Analogously, in each elementary time step N
:
2 (t) can decrease

by 1 only if: (i) a conformist is drawn from the set of all spinsons, (ii)

this spinson is adopted (with probability N
:
2 (t)=N2), and (iii) all

four chosen neighbors are unadopted (the probability of this event

is approximately equal to f1{c(t)g4
). Therefore, we can write the

following evolution equation for the number of adopted conform-

ists:

N
:
2 (tz1)~N

:
2 (t)z

N2

N

N
;
2 (t)

N2
c4(t){

N2

N

N
:
2 (t)

N2
f1{c(t)g4

~N
:
2 (t)zf1{p{c2(t)gc4(t){c2(t)f1{c(t)g4: ð3Þ

Dividing both sides by N we obtain the evolution equation for

the concentration of adopted conformists:

c2(tz1)~c2(t)z
1

N
f1{p{c2(t)gc4(t){c2(t)f1{c(t)g4
h i

: ð4Þ

Finally, combining formulas (2) and (4) we obtain the complete

set of equations which describe the time evolution of the system in

the person model:

c1(tz1) ~ c1(t)z 1
N

f fp{2c1(t)g,

c2(tz1) ~ c (t)z 1
N
f1{p{c2(t)gc4(t){c2(t)f1{c(t)g4
h i

,

c(tz1) ~ c1(tz1)zc2(tz1)

8>><
>>: ð5Þ

Figure 4. The time evolution of a system of N~100 spinsons on a complete graph from an initial state of no adopted. The number of
time steps is 10,000, which corresponds to 100 Monte Carlo Steps (MCS). Blue dots denote ’adopted’, white spaces denote ’not adopted’. In the
person model (top panel) the red solid lines denote positions of independent spinsons. Note how the blue dots stay on the red lines – generally only
the independent spinsons flip. This is very much unlike the dynamics of the situation model (bottom panel).
doi:10.1371/journal.pone.0112203.g004
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Now, let us briefly comment on the situation model. Within this

approach all agents are homogeneous and behave independently

with probability p and conform with probability (1{p). Following

a similar argumentation as in the person model, we arrive at the

evolution equation for the concentration of adopted spinsons in

the situation model:

c(tz1)~c(t)z
1

N
pf f1{2c(t)gz

1

N
(1{p) c4(t)f1{c(t)g{f1{c(t)g4

c(t)
h i

:

ð6Þ

From formulas (5) and (6) we can obtain the stationary value of

the concentration of adopted spinsons, i.e. c(?), and it agrees very

well with Monte Carlo results (compare Figs. 2 and 3).

But how can we understand the difference more intuitively,

without looking at these two figures and the formulas behind

them? To do this let us consider again a system in which initially

there are no adopted. In the person model only independent

spinsons can flip. With increasing f they flip more often but this is

generally true only for independent spinsons (see the upper panel

in Fig. 4). Only if all spinsons in a selected group of q agents are

adopted a non-independent neighboring spinson (note that on a

complete graph all spinsons are neighbors) may be flipped, which

happens quite rarely for smaller values of independence p. On the

other hand, in the situation model, every spinson can flip with

probability pf and therefore with increasing f more and more

spinsons flip (see the lower panel in Fig. 4). Therefore the results in

this case depend on f.

Conclusions

As suggested by numerous social experiments, the situation can

almost completely prevail over personality [34]. On the other

hand, personality psychologists argue that there is considerable
agreement that personality attributes exist and that these attributes

shape how individuals adapt to the challenges of life [28]. Although

the relative importance of personality versus situational factors is

very important from the point of view of psychology, it has been

ignored or forgotten in agent-based modeling (at least in the

context of binary opinion dynamics models). One of the reasons

for such a situation may be the belief that such a detail does not

affect the macroscopic behavior of the system.

However, as we have shown, there are significant differences

between the personality- and situation-oriented modeling ap-

proaches. In the former case, the results on the macroscopic scale

do not depend on flexibility (representing the level of conservatism

in the society) nor on the network structure, which does not seem

to be very realistic. This has far reaching consequences for agent-

based modeling in general [7]. Some psychologists argue that the

person-situation debate is an academic problem because the

concept of situation is not well defined. However, within agent-

based modeling this problem can be clearly defined.

Our results indicate that the situation approach may be more

relevant when modeling social interactions, which – in a way –

validates experimental results [30,33,34]. It may also shed some

light on the debate itself. Naturally, we are aware of the limitations

of our study, in particular the fact that only one type of model has

been analyzed here. Nevertheless we would like to emphasize that

when building ABMs we should take into consideration which of

the factors – personal traits or situation – determines the behavior

in a particular situation.
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