FACULTY OF

SUBJECT CARD

Course name in Polish	Podstawy teorii Galois		
Course name in English	Foundations of Galois Theory		
Course language			
University-wide general course type:1)			
1)basic course (mathematics, physics, che	1)basic course (mathematics, physics, chemistry, other)		
2) humanity course			
3) managerial skills			
4) English language			
5) other modern language			
Departmental course developing professi	onal skills:		
1) specialized course			
2) interdisciplinary course			
3) seminar (interdisciplinary, specialized, departmental)			
Type of course (obligatory, optional)			
Educational effects according to ZW 26/2017: P8S WG, P8U U, P8S UW,			
P8S UU, P8S KK			

Subject code MAP9030

*delete as applicable

C1

	Lecture	Laboratory	Seminar
Number of hours of organized classes in University (ZZU)	30		
Number of hours of total student workload (CNPS)	90		
Form of crediting	Exam **	Exam / crediting with grade*	Oral presentation
Number of ECTS points	3		
including number of ECTS points for practical (P) classes			
including number of ECTS points for direct teacher- student contact (BK) classes			

*delete as applicable **In case of didactic courses also inspections and evaluation classes

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of higher algebra - basic course

SUBJECT OBJECTIVES

Getting acquainted with the main ideas of the Galois theory, in particular the understanding of the relationship between gropup structure of authomorhismsof field and the field extension by radicals

C2	
	The possibility of applying Galois theory to specific algebraic equations

SUBJECT EDUCATIONAL EFFECTS
Relating to knowledge:
PEK_W01 – Student has knowledge of group theory
PEK_W02 – Student has knowledge of field theory
PEK_W03 – Student has knowledge of Galois theory
Relating to skills:
PEK_U01 – Student can to apply Galois theory to decide which algebraic equation can be solved by radicals
PEK_U02 – Student can apply methots of mathematical analysis ti determine group authomorphism of given conrecte algebraic equation
Relating to social competences:
PEK_K01 Student understands the importance scientific research and didactics
PEK_K02 – Student can discuss the importance of solving equations and their methods at the popular science level

PROGRAM CONTENTS			
	Form of classes – lecture Number of hours		
Lec 1	Group and subgroup notion, group rank, space of cosets, Lagrange theorem	2	
Lec 2	Hommomorphism of groups, group of all automorhisms	2	
Lec 3	Normal group, quotiont group, theorem on hommomorphisms of groups	2	
Lec 4	Symmetric group, decomposition of the group onto cecles, Cayley theorem	2	
Lec 5	Field and subfield notion, algebraicallyclosed field, algebraic closedness of the field of all complex numbers	2	
Lec 6	Field extension, theorem on existance of algebraically closed field extension	2	
Lec 7	Algebraic elements, transcendental real numbers and two proofs of their existance	2	
Lec 8	Irreducible polynomials, the Eisenstein theorem, rank of the algebraic element	2	
Lec 9	Field extension by the algebraic element, Abek theorem on primitive element	2	

Lec 10	Basis and rank of the algebraic extension, minimal polynomial of algebraic element	2
Lec 11	Group of authomorphisms of field, Galois extension and their group	2
Lec 12	Normal extension. Galois theorems	2
Lec 13	Roots of polynomials of the second, third and fourth degree	2
Lec 14	Field extension by radicals and their relationship with the solvable groups	2
Lec 15	Solvability of S_4 group and unsolvability of S_5 group, algebraic equation which are not have solution by radicals	2
	Total hours	30

	Number of hours	
Lab 1		
Lab 2		
Lab 3		
Lab 4		
	Total hours	

Form of classes – seminar		Number of hours
Sem 1		
Sem 2		
Sem 3		
Sem 4		
	Total hours	

TEACHING TOOLS USED			
N1	Blackboard		
N2	Chalk		

EVALUATION OF ACHIEVED SUBJECT EDUCATIONAL EFFECTS			
Evaluation:	Educational effect	Way of evaluating achievement of educational	
F – forming (partial)	number	effects	
C – concluding			
F1	PEK_W01,PEK_W0	exam	
	2		
	PEK_W02,PEK_U0		
	1		
	PEK_U02,PEK_K01		
	PEK_K02		

С

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] W. Narkiewicz, Teoria Galois dla nauczycieli, wyd. UWr 1993
- [2] S. Lange, Algebra, PWN Warszawa, 1984
- [3] A. Białynicki-Birula, Algebra, BM t. 40, PWN 1971, 2014
- [4] A. Białynicki-Birula, Algebra, BM t. 40, PWN 1971, 2014

SECONDARY LITERATURE:

[1] M. Bryński, J. Jurkiewicz, Zbiór zadań z algebry, PWN 1978

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

dr hab. inż. Robert Rałowski, email: robert.ralowski@pwr.edu.pl