WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY

SUBJECT CARD

Course name in Polish: Informatyka i kryptografia kwantowa

Course name in English:

Course language

University wide general course type:

1) basic course (mathematics, physics, chemistry, other)

2) humanity course

3) managerial skills

4) English language

5) other modern language

Departmental course developing professional skills:

1) specialized course

2) interdisciplinary course

3) seminar (interdisciplinary, specialized, departmental)

Type of course (obligatory, optional): obligatory

Educational effects according to ZW 26/2017:

Categories of acquired qualifications characteristics:

- Knowledge: P8U_W, P8S_WG

- Skills: P8U_U, P8S_UW, P8S_UO

- Social competencies: P8U_K, P8S_KK, P8S_KR

(advanced level of knowledge acquired in the field of quantum information and quantum cryptography problems; preparation to scientifically solve complex problems in those fields and initial preparation for the scientific work in fields of physics related to the course topic).

Subject code: INP9013

delete as applicable

	Lecture	Laboratory	Seminar
Number of hours of organized classes in University (ZZU)	30		
Number of hours of total student workload (CNPS)	90		
Form of crediting	Exam **	Exam / crediting with grade*	Oral presentation
Number of ECTS points	3		
including number of ECTS points for practical (P) classes			
including number of ECTS points for direct teacher- student contact (BK) classes	2		

*delete as applicable **In case of didactic courses also inspections and evaluation classes

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic knowledge of quantum mechanics

SUBJECT OBJECTIVES

C1 acquire knowledge in the field of modern quantum mechanics

WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

C2	acquire knowledge in new field of quantum information
C3	acquire knowledge in the field of quantum cryptography

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:

PEK_W01 has knowledge in the field of quantum mechanics

PEK_W02 has knowledge in the field of quantum information

PEK _W03 has knowledge in the field of quantum cryptography

Relating to skills:

PEK _U01 able to choose the proper theoretical tools for new concept of information prpcessing

PEK_U02 able to rewiew current status of the field of quantum information

Relating to social competences:

PEK_K01 understands the importance of research and teaching

PROGRAM CONTENTS			
Form of classes - lecture		Number of hours	
Lec1	Review of quantum mechanics ideas4		
Lec2	Pure and mixed states	2	
Lec3	3 Density matrix and quantum entanglement 2		
Lec4	Schmidt theorem	2	
Lec5	25 Bell states and von Neumann projection 2		
Lec6	26 Bloch sphere for qubit 2		
Lec7	2 Rabi oscillations for light and spin 2		
Lec8	Quantum teleportation and dense coding2		
Lec9	Decoherence and dephasing in nanostructures 2		
Lec10	c10 DiVincenzo criteria for QIP 2		
Lec11	Lec11Three orders limi for local quantum mechanics2		
Lec12	Lec12Quantum Key Distribution2		
Lec13	Lec13Current status of QIP2		
Lec14	Demo of QKD on Clavis and Quelle	2	
	Total hours	30	

TEACHING TOOLS USED				
N1	Lectures and demo in lab. NLTK			
N2	Materials prepared by the author available via internet			
N3	Individual study and preparation for the exam			

EVALUATION OF ACHIEVED SUBJECT EDUCATIONAL EFFECTS				
Evaluation:	Educational effect	Way of evaluating achievement of educational		
F – forming (partial)	number	effects		
C – concluding				
С	PEK_W01,	Examination		
	PEK_W02,			
	PEK_W03,			
	PEK_U01,			
	PEK_U02,			
	PEK_K01			

WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] M. A. Nielsen and I. L. Chuang, *Quantum Computation and Quantum*[2] M. Jacak, I. Jóżwiak, J. Jacak, J. Gruber, W. Jacak, Wprowadzenie do kryptografii kwantowej, PWR OW Wrocław 2013

Information, Cambridge UP, Cambridge, 2000.

[3] W. Jacak, J. Krasnyj, R. Gonczarek, L. Jacak, *Decoherence of orbital and spin degrees of freedom in quantum dots*, Oficyna Wydawnicza PWR, Wrocław 2010 (in Polish)

[4] J. Preskill, *Quantum information and computation*, Lecture Notes for

Phys., http://www.theory.caltech.edu/~preskill/ph229, 1998.

[5] W. Jacak, L. Jacak, and W. Donderowicz, *Introduction to Quantum Information and Communication*, Printpap, Łodź, 2011.

[6] J. Jacak, L. Jacak INTRODUCTION TO QUANTUM INFORMATION PROCESSING (SUPPLEMENTARY MATERIALS) e-script IP WUT 2010

SECONDARY LITERATURE:

[1] current literature in journals in the field of QIP and QKD

[3] W. K. Wootters and W. H. Żurek, *A single quantum cannot be cloned*, Nature **299**, p. 802, 1982.

[4] J. Preskill, *Topological quantum computation.*, Lecture Notes for Phys.

219, California Inst. Tech., 2005.

[5] A. Kitaev, Quantum computations: algorithms and error correction,

Russ. Math. Surv. 52, p. 1191, 1997.

- [6] D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum
- [1] *Information*, Springer, Berlin, 2000.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Lucjan Jacak <u>lucjan.jacak@pwr.edu.pl</u> Dr hab. Witold Jacak <u>witold.aleksander.jacak@pwr.edu.pl</u>