WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

FACULTY OF Fundamental Problems of Technology

SUBJECT CARD

Course name in Polish: Zaawansowane

modelowanie za pomocą systemu

algebry komputerowej *Maple* Course name in English: Advanced

Scientific Modeling using Computer

Algebra System Maple

Course language: english

University-wide general course type:

1)basic course (mathematics, physics, chemistry, other)

2) humanity course

- 3) managerial skills
- 4) English language

5) other modern language

Departmental course developing professional skills:

- 1) specialized course
- 2) <u>interdisciplinary course</u>
- 3) seminar (interdisciplinary, specialized, departmental)

Type of course (obligatory, optional): optional

Educational effects according to ZW 26/2017: P8S WG, P8S UW, P8S UK, P8S KR

Subject code: FTP009001

*delete as applicable

	Lecture	Laboratory	Seminar
Number of hours of organized classes in University (ZZU)	30		
Number of hours of total student workload (CNPS)	90		
Form of crediting	Exam **	Exam / crediting with grade*	Oral presentation
Number of ECTS points	3		
including number of ECTS points for practical (P) classes	0		
including number of ECTS points for direct teacher- student contact (BK) classes	2		

*delete as applicable **In case of didactic courses also inspections and evaluation classes

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic programming skills
- 2. Basic English language
- 3. Completing course "Modelling of physical processes and phenomena using Computer Algebra Systems" or sound practical skills in using *Maple*

WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

SUBJECT OBJECTIVES			
C1	Acquire advanced skill in using CAS Maple		
C2	Acquire skills to use Maple for solving chosen advanced problems in science and for modeling of chosen phenomena and processes in physics		

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge: PEK_W01

has deep sound knowledge related to CAS Maple

PEK_W02

has advanced knowledge in classical and quantum physics

relating to skills:

PEK U01

can use *Maple* for solving/modelling of advanced problems/phenomena in physics PEK_U02

can analyze advanced Maple worksheets

relating to social competences:

PEK_K01

awareness of the role of popularization of science

PROGRAMME CONTENT					
	Form of classes - lecture Number of hou				
Lec1	Introduction and summary of Maple: basic and advanced features	2			
Lec2	Dynamical systems: Phase plane portraits	4			
Lec3	Dynamical systems: Phase plane analysis	4			
Lec4	Linear ordinary differential equation models	3			
Lec5	Nonlinear ordinary differential equation models	3			
Lec6	Linear partial differential equation models: part 1	4			
Lec7	Lec7Linear partial differential equation models: part 23				
Lec8	Hunt for solitons	3			
Lec9	Nonlinear diagnostic tools	4			
	Total hours	30			

TEACHING TOOLS USED		
N1	Lecture	
N2	N2 Computer lab (during the lecture)	

EVALUATION OF ACHIEVED SUBJECT EDUCATIONAL EFFECTS				
Evaluation:Educational effectF – forming (partial)numberC – concluding		Way of evaluating achievement of educational effects		

F1	PEK_W01,	control of correctness of implementation of
	PEK_W02	Maple worksheets, discussions
	PEK_U01,	
	PEK_U02,	
	PEK_K01	
F2	PEK_W01,	seminar-like presentation of a solution/
	PEK_W02	modeling of chosen problem/process in
	PEK_U01,	physics/mathematics or other areas
	PEK_U02,	
	PEK_K01	
C = F1/4 + 3*F2/4		

WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- 1] R.H. Enns, Computer Algebra Recipes for Mathematical Physics (Birkhauser, Boston, 2005)
- [2] R.H. Enns, G.C. McGuire, *An Advanced Guide to Scientific Modeling* (Springer, New York, 2007)
- [3] A.C. Mituś, R. Orlik, G. Pawlik, *Wstęp do pakietu algebry komputerowej Maple* (Oficyna Wydawnicza DWSPiT, Polkowice, 2010) (in polish)

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

prof. dr hab. Antoni C. Mituś, antoni.mitus@pwr.edu.pl