FACULTY OF

SUBJECT CARD

Course name in Polish	Zaawansowana mechanika kwantowa	
Course name in English	Zaawansowana mechanika kwantowa	
Course language	Polish	
University-wide general course type:		
1)basic course (mathematics, physics, chemistry, other)		
2) humanity course		
3) managerial skills		
4) English language		
5) other modern language		
Departmental course developing profes	ssional skills:	
1) specialized course		
2) interdisciplinary course		
3) seminar (interdisciplinary, specialized, departmental)		
Type of course (obligatory, optional)		
Educational effects according to ZW 26/2017:		
P8U_W, P8S_WG, P8S_UW		
Subject code FZP9081		

*delete as applicable

	Lecture	Laboratory	Seminar
Number of hours of organized classes in University (ZZU)	30		
Number of hours of total student workload (CNPS)			
Form of crediting	Exam **	Exam / crediting with grade*	Oral presentation
Number of ECTS points	6		
including number of ECTS points for practical (P) classes			
including number of ECTS points for direct teacher- student contact (BK) classes	2		

*delete as applicable **In case of didactic courses also inspections and evaluation classes

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Ability to use the formalism of mathematical analysis and algebra
- 2. Foundations of quantum mechanics and ability to use its formalism
- 3. Ability to make use of literature resources, including research papers

SUBJECT OBJECTIVES		
C1	A student will learn advanced topics and methods of quantum mechanics	
C2		
C3		
C4		

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:

PEK_W01 A student will have knowledge on advanced quantum mechanics PEK_W02 A student will have knowledge on selected applications of the advanced methods of quantum mechanics PEK_W03 A student will be able to apply her/his knowledge on quantum mechanics in the study of physical problems

Relating to skills:

PEK_U01 Has skills related to the methodology of advanced theoretical research in quantum mechanics

Relating to social competences:

PEK_K01 PEK_K02

	PROGRAM CONTENTS			
	Form of classes – lecture Number of hours			
Lec 1	Permutations and symmetry of many-particle states	2		
Lec 2	Creation and annihilation operators	2		
Lec 3	Observables in the occupation number representation	2		
Lec 4	Field operators	2		
Lec 5	Momentum representation; spin	2		
Lec 6	Addition of angular momenta	3		
Lec 7	Transformation of observables; tensors	3		
Lec 8	Wigner-Eckart theorem	3		
Lec 9	Dirac equation	2		
Lec 10	Electromagnetic field: minimal coupling	2		
Lec 11	Non-relativistic limit; Pauli equation	2		
Lec 12	Foldy-Wouthuysen transformation	2		
Lec 13	Relativistic corrections to the hydrogen atom	3		
	Total hours	30		

Form of classes – laboratory Nur		
Lab 1		
Lab 2		

Lab 3		
Lab 4		
	Total hours	

	Form of classes – seminar		
Sem 1			
Sem 2			
Sem 3			
Sem 4			
	Total hours		

TEACHING TOOLS USED		
N1	N1 lecture with problem-oriented discussion	
N2	exercises as homework	

EVALUATION OF ACHIEVED SUBJECT EDUCATIONAL EFFECTS			
Evaluation: F – forming (partial) C – concluding	Educational effect number	Way of evaluating achievement of educational effects	
F1	PEK_W01, PEK_W02, PEK_W03, PEK_U01	Homework	
F2	PEK_W01, PEK_W02, PEK_W03, PEK_U01	Final test	
 C= =0.4*F1+0.6*F2			
U 0.4 · F1+0.0 · F2			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] F. Schwabl, Advanced Quantum Mechanics;
- [2] J. J. Sakurai, Modern Quantum Mechanics,

SECONDARY LITERATURE:

- [1] L. Schiff, Quantum Mechanics;
- [2] R. Shankar, Principles of Quantum Mechanics

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Katarzyna Roszak, katarzyna.roszak@pwr.edu.pl