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4 Scientific achievement being the basis of the habilitation pro-
cedure

The scientific achievement, in acordance with the art. 16 paragraph 2 of the Act of March
14th, 2003, concerning scientific degrees and titles (Dz. U. no. 65, item 595, as amended), is
the series of publications entitled:

4.1 Title

“The impact of the environment on the coherence and quantum correlations of quantum dot
ensambles”

4.2 List of publications constituting the scientific achievement

[H1] K. Roszak, P. Machnikowski, Phonon-induced dephasing of singlet-triplet superpositions
in double quantum dots without spin-orbit coupling, Phys. Rev. B 80 (2009) 195315.
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[H2] K. Roszak, P. Horodecki, R. Horodecki, Sudden death of effective entanglement, Phys.
Rev. A 81 (2010) 042308.

[H3] K. Roszak, P. Mazurek, P. Horodecki, Anomalous decay of quantum correlations of
quantum-dot qubits, Phys. Rev. A 87 (2013) 062308.

[H4] Ł. Marcinowski, K. Roszak, P. Machnikowski, M. Krzyżosiak, Phonon influence on the
measurement of spin states in double quantum dots using the quantum point contact, Phys.
Rev. B 88 (2013) 125303.

[H5] P. Mazurek, K. Roszak, R. W. Chhajlany, P. Horodecki, Sensitivity of entanglement decay
of quantum-dot spin qubits to the external magnetic field, Phys. Rev. A 89 (2014) 062318.

[H6] P. Mazurek, K. Roszak, P. Horodecki, The decay of quantum correlations between quantum
dot spin qubits and the characteristics of its magnetic-field dependence, EPL 107 (2014)
67004.

[H7] K. Roszak, Ł. Marcinowski, P. Machnikowski, Decoherence-enhanced quantum measure-
ment of a quantum-dot spin qubit, Phys. Rev. A 91 (2015) 032118.

[H8] K. Roszak, R. Filip, T. Novotný, Decoherence control by quantum decoherence itself, Sci.
Rep. 5 (2015) 9796.

4.3 Description of the scientific goal and the obtained results contained in a
the group of research papers presented here as a scientific achievement

4.3.1 Introduction

The described scientific achievement involves the study a number of realistic scenarios involving
QDs (QDs) which are of interest both from the point of view of our understanding of quantum
mechanics and of potential experimental realizations of devices utilizing coherence of QD states.
The approach allowed me to characterize the possible evolution of quantum correlations in QD
systems (described by both quantum entanglement and the quantum discord, which prove to
have different regimes of usefulness for e. g. magnetic field measurement) and specify the
means and limitations for the experimental characterization of entanglement, both for spin
and exciton qubits. For singlet-triplet spin qubits, which are protected against decoherence
from the hyperfine interaction with the spins of atomic nuclei, I found a phononic decoherence
mechanism which relies on the Pauli exclusion principle but does not require the spin-orbit
coupling and which is dominant at very low temperatures. Using a similar approach, I was
able to characterize the effect of decoherence on a proposed measurement scenario of these
singlet-triplet qubits and find a situation when decoherence is actually desirable an leads to
an enhanced distinguishability of a quantum projective measurement.

Quantum dots. Quantum dots (QDs) [1, 2], zero-dimensional nanostructures embedded in
the solid state, are very convenient for the study of the effects of decoherence on quantum
behavior. This is because, firstly, their small dimensionality practically guarantees a wide
range of quantum behavior of the charge and spin states of charge carriers confined in the
dots. Secondly, being solid-state systems, QDs are susceptible to different types of decoherence
processes due to interactions with the solid-state environment, depending on the QD states
in question, and on the type of semiconductor material they are made of. This involves a
wide range of phonon-induced effects (interactions with vibrations of the crystal lattice are
unavoidable in the solid state), but also other interactions need to be taken into account which
result from the presence of the bulk surrounding the QDs.
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Furthermore, the zero-dimentionality of QDs, which is responsible for the quantization of
confined states in all three dimensions, allows for their simplified, atomic-like, treatment. Al-
though such a simplification may seem (nadmierne) regarding the description of objects which
vary in size from a few to hundreds of nanometers (in all three dimensions), and which are in
fact composed of thousands of atoms, it has repeatedly proven to be sufficient to yield both
qualitatively and quantitatively valid results. The advantage of such a treatment lies, apart
from saving computational time, in the fact that the obtained results can often be found in an
almost analytical form (up to the dependence on the actual size and shape of QDs, when nu-
merical treatment is necessary). Although in many situations such a semi-analytical treatment
is fairly irrelevant, in the study of the evolution of quantum correlations (and up to a certain
level, the study of quantum decoherence) a deeper understanding of the physics underlying
the observed processes often depends on obtaining such semi-analytical mathematical formu-
las for the description of the evolution, and therefore a simplified description of the quantum
information characteristics studied.

4.3.2 Self-assembled QDs versus electrostatically defined QDs

Many different systems have been described as QDs, the most exotic of which are colloidal
QDs, which are in fact nanocrystals suspended in liquid and graphene flakes. The common
factor for structures described as QDs is a discrete structure of the (few) energy levels which
leads to an energy spectrum which resembles that of atoms. Here, I limit myself to two types of
semiconductor QDs which are in fact examples of three dimensional quantum wells embedded
in a solid state environment.

The first type are called self-assembled QDs [3, 4, 5] and they are formed of a small island
of one semiconductor material inside of a different semiconductor material. These kind of dots
form spontaneously, if the lattice constant of the two semiconducting crystals vary by a small
amount. Then, when the QD material is grown on a crystal surface of the material in which
the QD is embedded, the strain resulting from the mismatch of the lattice constants lead to the
formation of islands instead of the first few layers. If the growth is then stopped, an irregular
array of QDs is obtained. The sizes and density of the dots depends not only on the growth
parameters, but also on the materials used. An advantage of self-assembled QDs is the fact
that again due to strain, QDs in different layers tend to nucleate on top of one another, leading
to naturally occurring double QDs or even stacks of a few quantum dots.

Self-assembled QDs are most commonly used in experiments where the qubit manipulation
is performed optically. These can involve both charge and spin states, although the optical
manipulation of the spin of single charge carriers (electrons or holes) often requires the utiliza-
tion of spin states of a larger number of particles (such as trions). In the following, whenever
excitonic qubits are discussed, material and dot parameters which are used correspond to
self-assembled GaAs/InGaAs QDs.

The second type of QDs discussed here are called electrostatically defined or lateral QDs
[6, 7, 8]. These are formed in two-dimensional electron gas (2DEG) by embedding (almost
circular) leads on top of a two-dimensional quantum well. Gate voltages applied to the leads
restrict the movement of electrons in the 2DEG the two remaining dimensions forming the
QDs. These type of dots are usually used in any experiments which involve electric control of
quantum states, most significantly experiments on spin qubits.

4.3.3 Spin and charge qubits in QDs

Solid state systems are sought after for quantum information processing, since they should
be easier to integrate with existing computers and promise to be more robust than other
ensembles. Different QD states have been proposed as potential qubits for solid state quantum
information processing. These can be broadly divided into charge and spin qubits, which differ

5



most substantially when it comes to initialization techniques, the possibilities of manipulation
and measurement, as well as the decoherence processes to which they are susceptible.

A range of charge carriers which can occupy a QD and the limit to their number differs
depending on the size of the dot. Although the basic particles to be confined are limited
to electrons and holes, already an exciton (interacting electron-hole pair) requires a different
experimental and theoretical treatment than the electron and the hole alone. Foremost, an
exciton can be excited optically in an empty QD via the transfer of an electron from the valence
band into the conduction band, which is impossible for either the electron or the hole alone. In
the following excitonic qubits [9], for which the qubit state |0〉 denotes an empty QD and the
qubit states |1〉 means that the QD is occupied by an electron in its ground state, and their
interaction with the phonon environment is broadly discussed.

Spin states are better protected from the environment, but as a trade off, they are also
much harder to manipulate. The appeal of long decay and coherence times has lead to the
original proposal of a spin qubit [10] which was specified as the spin-up and spin-down state of a
single electron confined in a QD. Although this type of qubit is immune to the fast decoherence
processes which are mediated by phonons, because the charge state of both qubit states is the
same and the spin-orbit interaction is weak, it takes much longer to address than any of the
charge qubits. The main decoherence process for such spin qubits is due to the hyperfine
interaction between the electron spin and the spins of the nuclei of the atoms of which the
QD is formed. This decoherence, although orders of magnitude slower than phonon-induced
effects, has as yet been enough to hinder effective quantum information processing on spin
qubits.

One of the solutions of the problem of the hyperfine interaction is to use more involved spin
states as qubits. The simplest pair of spin states which are protected (by symmetry) from the
hyperfine interaction with the environment is the low energy spin-singlet state and the spin-
triplet state of two ground-state electrons confined two QDs (which are as identical as possible).
The singlet-triplet qubits have the additional advantage that they are more straightforward
to prepare and measure in electrostatically defined QDs (through the manipulation of the
electrostatic potential of the dots) than single spin qubits. On the other hand, the higher
energy singlet states are energetically separated only via the Coulomb interaction which tries
to prevent double QD occupation. This opens the way for other decoherence channels than
the hyperfine interaction, including phonons.

In the following, both types of spin qubits introduced above are discussed in the context
of quantum information processing and magnetic field measurement.

4.3.4 Decoherence [H1, H8]

Decoherence is the principal issue for most types of qubits. In solid state systems it is a
particularly valid problem, because there is no way of isolating the qubit from an environment
in which it is embedded. From the point of view of coherent quantum applications, two kinds of
decoherence are of interest. One is spin relaxation (thermalization of occupations) between the
selected basis states (qubit states). The other one is dephasing of superpositions made of these
states. Such a process, often referred to as pure dephasing, does not affect the occupations
of the qubit basis states, thus conserving the classical information of the system. However,
by destroying quantum coherence, it degrades the quantum bit to a classical one and hence is
detrimental for quantum information storage or processing. Moreover, if the system is initially
prepared in a superposition of the basis states, the pure dephasing process will lead to a decay
of this state.

The most prominent sources of decoherence for QDs are the interaction with phonons and
the hyperfine interaction (the latter is important only for spin qubits). In what follows, I will
introduce examples of decoherence which results from both kinds of interactions. The choice
is dictated by the relevance of the decoherence processes to the scientific achievement which is
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being presented.

Phonon-induced decoherence of an excitonic qubit. The phonon-induced decoherence
of a superposition state of an excitonic qubit (introduced in Sec. 4.3.3), is be dominated by
the deformation potential coupling [ksiazka,krummheuer02]. This results from the fact that
the piezoelectric coupling is directly related to the Coulomb interaction between the confined
charge distribution and the phonon-related polarization field. For an electron and a hole
localized in the same spatial volume with strongly overlapping wavefunctions there will be a
large cancellation effect between the piezoelectric interaction of the two charged particles.

The resulting decoherence takes the form of partial pure dephasing [11, 12, 13]. Pure
dephasing means that the occupation of the dot remains unchanged while the phase information
of the quantum dot state leaks into the environment, reducing the amplitude of the off-diagonal
elements of the density matrix. The partiality, which is due to the super-Ohmic character of
the phonon environment, on the other hand means that the process is not exponential and a
finite amount of coherence is left in the superposition state even at long times.

The Hamiltonian of the system is given by

H = ε|1〉〈1|+
∑
k

~ωkb
†
kbk + |1〉〈1|

∑
k

(f∗kbk + fkb
†
k), (1)

where the first term describes the energy of the confined exciton (ε is the energy difference
between the states without phonon corrections), the second term is the Hamiltonian of the
phonon subsystem and the third term describes the interaction. Carrier-phonon interaction
constants in (1) are given by

fk = (σe − σh)

√
~k

2%VNc

∫ ∞
−∞

d3rψ∗(r)e−ik·rψ(r), (2)

and describe the deformation potential coupling between the carriers and the lattice modes.
Here % is the crystal density, VN is the normalization volume of the phonon system, ωk = ck
is the frequency of the phonon mode with the wave vector k (c is the speed of longitudinal
sound), and b†k, bk are phonon creation and annihilation operators.

The carrier-phonon interaction term in Eq. (1) is linear in phonon operators and describes a
shift of the lattice equilibrium induced by the presence of a charge distribution in the dot. The
stationary state of the system corresponds to the exciton and the surrounding coherent cloud
of phonons representing the lattice distortion to the new equilibrium. The transformation that
creates the coherent cloud is the shift wbkw† = bk−fk/(~ωk), generated by the Weyl operator
[D4]

w = exp

[∑
k

(
fk
~ωk

b†k −
f∗k
~ωk

bk

)]
. (3)

A straightforward calculation shows that the Hamiltonian (1) is diagonalized by the unitary
transformation W = |0〉〈0| ⊗ I + |1〉〈1| ⊗ w, where I is the identity operator and the tensor
product refers to the carrier subsystem (first component) and its phonon environment (second
component).

Following Ref. [D4] we can find the exact time-evolution of the QD density matrix under
the perturbation of a phonon bath. For a pure (fully coherent) initial state

|ψ〉 = a|0〉+ b|1〉 (4)

this is

ρ(t) =

(
|a|2 a∗beiEt/~〈W (t)〉

ab∗e−iEt/~〈W †(t)〉 |b|2

)
, (5)
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where E = ε−
∑

k |fk|2/(~ωk) is the shifted exciton energy and the average of Weyl operators
at thermal equilibrium is equal to

〈W (t)〉 = 〈w†(t)w〉 = exp

[
−i
∑
k

∣∣∣∣ fk~ωk

∣∣∣∣2 sinωkt

]
× exp

[∑
k

∣∣∣∣ fk~ωk

∣∣∣∣2 (cosωkt− 1)(2nk + 1)

]
;

nk are bosonic equilibrium occupation numbers.
In the case of two qubits interacting with the same phonon environment the system is

described by the Hamiltonian

H = ε1(|1〉〈1| ⊗ I) + ε2(I⊗ |1〉〈1|) + ∆ε(|1〉〈1| ⊗ |1〉〈1|) + (|1〉〈1| ⊗ I)
∑
k

f
(1)
k (b†k + b−k)

+(I⊗ |1〉〈1|)
∑
k

f
(2)
k (b†k + b−k) +

∑
k

ωkb
†
kbk. (6)

This Hamiltonian is composed of two single qubit Hamiltonians of Eq. (1) (where the energies
and the coupling constants of the two dots are distinguished by the indices 1 and 2) and an
additional interaction term which describes the energy shift which is present when both dots
are occupied (the biexcitonic shift), ∆ε. The coupling constants for identical QDs have the
form f

(1,2)
k = fke

±ikzd/2, where fk is given by Eq. (2) and d is the distance between the dots.
The Hamiltonian (6) is diagonalized by an analogous Weyl transformation as in the single qubit
case and the evolution of the QD density matrix can be found in a straightforward manner by
a generalization of the single qubit results.

A scheme for minimizing phonon decoherence of an excitonic qubit [H8]. The
creation of an exciton in a superposition state in the solid state environment of a QD perturbs
the surrounding crystal lattice and hence, leads to a modification of the state of the phonon
environment. Thus, it is logical to assume that applying repeated measurements in the basis
corresponding to the initial QD state (which is analogous to the quantum Zeno effect) will not
only freeze the QD evolution for the duration of the measurements, but will also affect the
degree of partial pure dephasing resulting from the carrier-phonon interaction.

The measurement on the QD subsystem is taken into account as a projection measurement
in the quantum-mechanical sense (as opposed to a realistic optical measurement which is
natural in this system). We are hence dealing with projection operators of the form

P+ = |ψ〉〈ψ| ⊗ I, (7)
P− = |ψ⊥〉〈ψ⊥| ⊗ I, (8)

with |ψ〉 equal to the initial state given by Eq. (4) and the perpendicular |ψ⊥〉 = b∗|0〉 − a∗|1〉
(the unity I is in the phonon subsystem). Note, that regardless of the measurement outcome
the degree of coherence is retained and equal to one at the time of the last measurement
(D(t) = |〈0|ρ(t)|1〉|/|a∗b|), so that an outcome of |ψ⊥〉 is not necessarily unfavorable.

The degree of coherence at any given time may be calculated using a recursive scheme
given the state of the reservoir at the last measurement time, D(t) = |〈W (t − τ̃)〉n|. Here
τ̃ =

∑n
m=1 τm is the sum of all delay times between the n measurements that occurred until

time t, and 〈...〉n denotes the average over the reservoir degrees of freedom, with the reservoir
state at the time of the n-th measurement R(τ̃). The state of the reservoir at the time of the last
measurement τ̃ can be found, if the state of the reservoir after the one-but-last measurement is
known (it depends on the measurement outcome). For the explicit form of R(τ̃) see Ref. [H8].

The left panel of Fig. 1 shows the maximal and minimal long-time values (asymptotic) of
the degree of coherence (D∞) as a function of the delay time. As can be seen the gain (or loss)
stabilizes at a given level, if the delay time is longer than a few-picosecond threshold value that
corresponds to the time after initialization when the maximal partial pure dephasing is reached.
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Figure 1: Asymptotic degree of coher-
ence as a function of the delay time for
two temperatures. The maximal (solid
line) and minimal (dashed line) values
are shown in the left panel. The right
panel shows the detail for the measure-
ment outcome |ψ〉 (solid line) and |ψ⊥〉
(dashed line). The dotted lines denote
the degree of coherence in the case of no
extra measurement in both panels.
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Figure 2: Temperature dependence of
the gain in the asymptotic degree of
coherence after single measurement.
Dashed lines correspond to the point
of maximal gain (Eτ = 2πj) for the
measurement outcomes |ψ〉 (gain) and
|ψ⊥〉 (loss). The solid line corresponds
to the point of equal gain (Eτ = (j +
1/2)π).

In the right panel in the same figure the full dynamics is shown. The oscillations arize from
the interplay of the coherent-QD-evolution-dependent terms which are present in the reservoir
state due to the measurement and the actual QD evolution.. The minima (maxima) for the
measurement outcome |ψ〉 (|ψ⊥〉) correspond to the situation when Eτ = (2j + 1)π (point of
minimal gain) and the maxima (minima) to Eτ = 2πj (point of maximal gain), where j is a
natural number (?). A higly interesting point is at Eτ = (j+1/2)π when the gain in coherence
is equal for both measurement outcomes (point of equal gain); interestingly this gain is not
much different than that at the point of maximal gain and at some temperatures may even be
slightly larger (see the 34 K curves).

The temperature dependendce of the gain in the asymptotic degree of coherence, g∞ =
(D∞ − D0

∞)/(1 − D0
∞), is shown in Fig. 2. D0

∞ denotes the asymptotic degree of coherence
in the case of no measurement. Surprizingly, the temperature dependence has a maximum
and these maxima differ for the different points of gain. The optimal temperature in case
of a measurement at the point of maximal gain is Tm ≡ 70 K for the material paramters
used, while it is around 34 K for the point of equal gain. Note, that for low temperatures
the gain at the maximal point is smaller than at the equal point. The loss at minimal point
has no extremum and it is proportionally smaller with rising temperature, hence, rising the
temperature diminishes the loss in coherence sustained by the wrong measurement outcome
at the point of maximal gain (the point of maximal gain for outcome |ψ〉 corresponds to the
minimal gain of outcome |ψ⊥〉).

Although the fast oscillations of the asymptotic degree of coherence may suggest potential
problems in the experimental realization of the decoherence-reducing scheme, this is not in
fact the case. The reason for this is that the probability of measuring outcome |ψ〉 oscillates
synchronously with the degree of coherence around the value of 1/2 (|a|4 + |b|4). This means
that the probability of measuring state |ψ〉 is maximal when the reduction of dephasing because
of the measurement of this state is greatest and likewise for state |ψ⊥〉.
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Phonon-induced spin decoherence. Spin qubits are typically less prone to decoherence
than charge qubits. In QDs this is due to the fact that there is no direct interaction between
spins and fonons. Hence, phonon induced processes which affect the spin must relay on a
second interaction which couples spin and orbital degrees of freedom of charge carriers confined
in QDs. The spin-orbit coupling is such an interaction, but it is usually small which results in
the phonon perturbations on the spin state being small as well [14, 15, 16, 17, 18, 19].

Phonon decoherence of spin singlet-triplet qubits [H1] Below an efficient pure de-
phasing channel which is always present in systems of two electron spins localized in coupled
semiconductor QDs is demonstrated. This channel results solely from the charge-phonon inter-
action in the presence of inter-dot tunnel coupling, and is essentially due to the distinguisha-
bility of singlet and triplet states via Pauli-blocking of certain transitions in the triplet case.
The key feature of this decoherence process is that it does not require any spin-environment
interaction and relies only on the mechanisms (tunnel coupling and the Pauli principle) that
are essential for the implementation of quantum gates. In particular, it appears also in ma-
terials with negligible spin-orbit and hyperfine couplings and is essentially independent of the
magnetic field.

Qualitatively, in the lowest energy state of the two-electron system, each dot is occupied
by a single electron. The spin configuration of the system may then be either singlet or
triplet. In the former case, the orbital (spatial) wave function is symmetric and a transition
to a doubly occupied state is possible [20]. This is forbidden by Pauli exclusion in the triplet
configuration with an anti-symmetric orbital part. Such transitions are inefficient at sub-Kelvin
temperatures because the doubly occupied state has a higher energy and the occupation of the
required phonon states is negligible. However, a two-phonon process is still possible, in which
the absorption of a phonon is followed by the re-emission of another one [21, 22]. In such a
process, the doubly occupied state is involved only “virtually” and energy conservation requires
only that the two phonons have the same energy (that is, the scattering is elastic) but this
energy can be arbitrary. Therefore, even at low temperatures, phonons scatter on a double QD
in the singlet state, while a double QD in the triplet state is transparent to phonons. In this
way, the singlet and triplet states can be distinguished by the macroscopic environment and
each scattering event builds up correlation between the spin system and the crystal lattice.
This distinguishability leads to pure dephasing of any singlet–triplet superposition, in some
sense analogous to the “collisional decoherence” of the orbital degrees of freedom [23, 24].
Although the intensity of this process drops down at low temperatures because of decreasing
two-phonon spectral density at low frequencies, the temperature dependence is only polynomial
(as opposed to exponential suppression of real transitions). At sub-Kelvin temperatures, at
which spin coherent control experiments on double QDs are performed, the two-phonon process
can still lead to pure dephasing times as low as tens or hundreds of microseconds.

The Hamiltonian of the system is

H = HDQD +Hph +Hint. (9)

The first term describes the electrons and has the form

HDQD = −t1
∑
s

(
a†LsaRs + h.c.

)
+

1

2

∑
s,s′

∑
i,j,k,l

Vijkla
†
isa
†
js′aks′als, (10)

where ais, a
†
is are the electron annihilation and creation operators with i = L,R denoting

the left and right dot, respectively, and s = ↑, ↓ labeling the spin orientation. The first term
in Eq. (??) accounts for single-particle inter-dot tunneling. The second term describes the
Coulomb interaction, with Vijkl = Vjilk = Vklij = Vlkji (the wave functions may be chosen
such that the matrix elements are real). For identical QDs the Coulomb matrix elements are
also invariant under the interchange of the dots, L↔R. Among the Coulomb terms, VLRRL =
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VRLLR ≡ U1 and VLLLL = VRRRR ≡ U2 are the energies of the singly- and doubly-charged
configurations, VLRLR = VRLRL ≡ EX are exchange energies, VLLRR = VRRLL ≡ tC2 is the
coupling between the doubly-charged configurations, while VRLLL and equivalent terms account
for the coupling between the singly- and doubly-charged configurations and will be denoted by
tC.

The QD Hamiltonian can be diagonalized analytically and its eigenstates are the three
triplet states

|(1, 1)Ts〉 = a†Lsa
†
Rs|0〉, s =↑, ↓, (11a)

|(1, 1)T0〉 =
a†L↑a

†
R↓ − a

†
R↑a
†
L↓√

2
|0〉 (11b)

with identical eigenenergy VLRRL − VLRLR. The singlet eigenstates are given by

|(−)S〉 =
1√
2

(|(2, 0)S〉 − |(0, 2)S〉) (12a)

|S+〉 =
1√

1 + ξ2
[|(+)S〉+ ξ|(1, 1)S〉], (12b)

|S−〉 =
1√

1 + ξ2
[|(1, 1)S〉 − ξ|(+)S〉], (12c)

where |(p, q)S〉 is the spin singlet state with p electrons in the left dot and q electrons in the
right dot, while |(+)S〉 = (|(2, 0)S〉+ |(0, 2)S〉) /

√
2. The parameter

ξ =
2
√

2t

U +
√
U2 + 8t2

,

where U = VLLLL + VLLRR − VLRRL − VLRLR and t =
√

2(VRLLL − t1). The eigenenergies
of the singlet states are equal to E(−)S = VLLLL − VLLRR and E± = E ±

√
U2 + 8t2/2, where

E = (VLLLL + VLLRR + VLRRL + VLRLR)/2. In the small tunneling regime, t � U , the
parameter ξ � 1 and |S+〉 ≈ |(+)S〉, |S−〉 ≈ |(1, 1)S〉. The two lowest energy states with
different spin symmetry (which constitute the qubit) are any triplet state and the singlet state
|S−〉.

The Hamiltonian of the phonon reservoir is given by

Hph =
∑
k,λ

~ωk,λb
†
k,λbk,λ,

where bk,λ, b
†
k,λ are phonon annihilation and creation operators for a phonon from a branch λ

with a wave vector k and ~ωk,λ are the corresponding energies.
Since we formulate the model in terms of states localized in individual dots the overlap

of the corresponding single particle wave functions is negligible and the off-diagonal phonon
couplings (transferring the electrons between the dots) vanish. The electron-phonon interaction
is therefore described by

Hint =
∑
s,i

∑
k,λ

F
(λ)
i (k)a†isais(bk,λ + b†−k,λ),

where F (λ)
L/R(k) = F (λ)(k) exp[±ikxD/2] are coupling constants and D is the inter-dot distance.

We include the deformation potential and piezoelectric couplings. The coupling constants for
the longitudinal and transverse acoustic phonon branches can be found in Refs [25, 2]. Note
that since the electron-phonon interaction conserves spin, the singlet states are not coupled by
phonon-assisted transitions to the triplet states.
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Figure 3: Two-phonon induced pure de-
phasing rates: (a) As a function of tem-
perature for different tunneling param-
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tures. Gray line in (a) shows the dephas-
ing rates from single-phonon transitions
for t = 0.3 meV. All solid lines correspond
to D = 200 nm, while the dashed lines in
(b) show results for D = 300 nm.

The evolution of the reduced density matrix of the two-electron subsystem can be described
using the time-convolutionless (TCL) projection operator method [26]. For factorized initial
conditions (pure initial state), expanding the TCL generator up to the fourth order yields
the evolution which accounts for two-phonon-assisted processes which are responsible for the
studied effect.

The pure dephasing rates resulting from the two-phonon (scattering) process are shown
in Fig. 3(a) as a function of temperature. Dephasing rates due to the single-phonon assisted
transition for t = 0.3 meV are shown in the same figure for comparison. At low temperatures,
at which experiments on double QD ensembles are performed, the single-phonon transition
is suppressed. At these temperatures, the dominating decoherence mechanism is the elastic
scattering. This two-phonon process is much less influenced by decreasing the temperature
since it involves only a virtual transition to a higher energy (doubly charged) singlet state.
The resulting pure dephasing rates at sub-Kelvin temperatures are relatively high, compared
to experimentally achievable gate operation times [27].

Fig. 3(b) shows the pure dephasing rates as a function of the coupling parameter t. This
parameter, which is also crucial for unitary operations on the two-qubit system, affects the
dephasing rate via the energy difference between the singlet states, ~ω0, and via the mixing
parameter ξ, which enters the spectral density. Obviously, the dephasing vanishes for uncoupled
dots. However, for non-zero coupling, the dephasing rate grows rapidly with t. One can see
that the dephasing rate increases as the distance between the dots D grows, which is a general
feature of scattering-induced dephasing [24, 23].

Hyperfine interaction. The primary source of decoherence for a single electron spin con-
fined in a QD is the hyperfine interaction between the electron spin and the spins of the nuclei
of the surrounding atoms for many materials (see Refs [28, 29, 30] for review). The condition
for the relevance of the hyperfine coupling is that at least some of the atoms have non-zero
nuclear spin, which is usually the case (and example of a spinless material is especially purified
silicon).

This interaction leads to pure dephasing at moderately high magnetic fields, but at lower
magnetic fields a more involved decoherence process is observed which leads to a redistribution
of the electron spin occupations. At low and intermediate magnetic fields the calculation
of the evolution of the density matrix of the electron spin becomes difficult, because of the
so called “flip-flop” terms in the hyperfine-interaction Hamiltonian. These terms cannot be
treated perturbatively at low magnetic field values (the interaction can be regarded as a small
perturbation with respect to the electron Zeeman splitting only at moderately high magnetic
fields [30, 29]). Furthermore, the dependence of the hyperfine coupling constants on the location
of a given nucleus with respect to the electron wave function substantially complicates the
problem. This combined with the discrete structure of the nuclear spin environment [31]
makes the problem strongly involved numerically.

A substantial simplification of the problem is obtained when the initial state of the nuclear
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environment is limited to the infinite-temperature thermalized state. The assumption is not
unreasonable, since the bath tends to relax quickly to a high-temperature state at experimen-
tally accessible temperatures [31]. In this case, the “box model” can be used (also known as the
uniform coupling model) for the whole range of magnetic field values [32, 33]. This is because
the hyperfine-interaction-induced entanglement decay takes place on time scales much shorter
than the “box model” limit of applicability, t < N/A, where N denotes the number of nuclei,
and A =

∑
k Ak is the sum of coupling constants between the electron and the nuclei.

The system under study can be described by the Hamiltonian (the magnetic field is applied
in the z direction),

H = −gµBŜzB +
∑
k

AkŜ
z Îzk +

1

2

∑
k

Ak

(
Ŝ+Î−k + Ŝ−Î+

k

)
. (13)

The first term in the Hamiltonian (13) is the electron Zeeman splitting, where g is the effective
electron g-factor, µB is the Bohr magneton, Ŝz is the component of the electron spin parallel
to the magnetic field, and B denotes the applied magnetic field. The last two terms describe
the hyperfine interaction between the spin of an electron and the spins of the surrounding QD
nuclei. The diagonal (second) term is also known as the Overhauser term and leads to pure
dephasing, while the last term, known as the “flip-flop” term, is responsible for both dephasing
and leveling out of the electron spin occupations. Here, Îk are spin operators of the individual
nuclei (discriminated by the index k). Îzk is the component parallel to the applied magnetic
field, while Î±k = Îxk ± iÎ

y
k are the nuclear spin rising and lowering operators. Analogously,

Ŝ± = Ŝx ± iŜy are the rising and lowering operators for the electron spin. The coupling
constants of the hyperfine interaction depend on the species of the nuclei and on its location
with respect to the electron wave function,

Ak = A0
kv0|Ψ(rk)|2, (14)

where A0
k = 2

3µ0γeγk are the coupling strength constants of a given nuclear species found at
site k, with µ0 denoting the vacuum magnetic permeability, γe and γk being the electron and
nuclear gyromagnetic ratios, respectively, while v0 is the unit cell volume of the QD crystal,
Ψ(r) is the wave function of the electron located in the dot, and rk is the position of the k-th
nucleus.

The nuclear Zeeman term and the dipolar interaction between nuclei are omitted in the
Hamiltonian (13). The first one was ignored because nuclear Zeeman energies of gallium and
arsenic are very small, and the resulting energy splittings are of the order of tens of neV
(corresponding to less than a mK) for each Tesla of magnetic field applied to the system.
The nearest neighbor dipolar coupling constants between nuclei are even smaller, and are of
the order of 0.1 neV. Hence, at typical experimental temperatures both nuclear terms in the
Hamiltonian are much smaller than kBT and can be omitted [32, 30]. For the same reason
the nuclear baths can be described by the infinite-temperature, fully mixed density matrices
[31, 30] unless the state of the nuclear environment is especially experimentally prepared.

In the high-magnetic-field limit, gµBB > A, for which the “flip-flop” term in the Hamilto-
nian (13) may be completely neglected, the Hamiltonian is diagonal and it is possible to find
the QD state evolution for a realistic distribution of coupling constants Ak given by Eq. (14)
while taking into account the large number of nuclei N ∼ 105. The resulting dynamics is
limited to pure dephasing which is further independent of the magnetic field (and local unitary
oscillations that are irrelevant for the study of entanglement) for the initial high-temperature
density matrix of the nuclear bath. The decay of a single spin is Gaussian and proportional to
exp(−t2/T ∗22 ) [32], with a characteristic time constant T ∗2 ≈

√
6

I(I+1)

√
N/A, where the same

spin I for all nuclei is assumed.
To quantify the single dot evolution at lower magnetic fields, the “box model” can be

used which is valid on short time scales and which at high magnetic fields converges with the
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approach introduced in the last paragraph. The upper limit of short-time-scale behavior is
approximated by N/A [34]. In the “box model”, the hyperfine coupling terms are assumed
constant Ak = α = A/N , which allows for the exact diagonalization of the Hamiltonian (13).

4.3.5 Quantum correlations [H2, H3, H5, H6]

Entanglement. Entanglement [35, 36] is one of the fundamental constituents of quantum
theory. Correlations between the results of appropriately chosen measurements on entangled
subsystems cannot be accounted for by any classical (realistic and local) theory [37], preclud-
ing the existence of a wide class of hypothetical more fundamental structures underlying the
incompleteness of quantum description. Apart from its essential role in our understanding of
the quantum world, entanglement is an important resource in quantum information processing
[38] where it provides a quantum channel for teleportation [39], superdense coding [40], and
distribution of cryptographic keys [41].

In order to manifest genuinely quantum behavior resulting from entanglement a quantum
system must maintain phase relations between the components of its quantum superposition
state, involving different states of distinct subsystems. Keeping in mind that the subsystems
may be separated by a macroscopic distance, one may expect such a non-local superposition
state to be extremely fragile to the dephasing effect of the environment. In fact, it has been
shown (for a 2 × 2 system) that entanglement between two subsystems tends to decay faster
than local coherence [42, 43, 44]. As expected, the decay of entanglement is stronger if the
subsystems interact with different environments (which might result from a large spatial sepa-
ration between them): certain states that show robust entanglement under collective dephasing
become disentangled by separate environments [43]. Quite remarkably, it was shown for two
different classes of systems [44, 45] that certain states may become separable (completely dis-
entangled) within a final time under conditions that lead to usual, exponential decay of local
coherence. Since even partial entanglement of many copies of a bipartite quantum system may
be still distilled to a smaller number of maximally entangled systems [46], it seems essential
to understand whether environmental influence leads to appearance of separability in realistic
models of dephasing.

For a quantitative description of the decay of entanglement, a measure of entanglement that
may be calculated from the system state is needed. For pure states, von Neumann entropy of
one subsystem [47] may be used but for mixed states there is no unique entanglement measure
[48, 49]. One choice is to use the entanglement of formation (EOF), defined as the ensemble
average of the von Neumann entropy minimized over all ensemble preparations of the state [49].
Such a measure may be interpreted as the asymptotic number of pure singlets necessary to
prepare the state by local operations and classical communication. A practical characterization
for mixed state entanglement is available for small systems [50, 51] but an explicit formula for
calculating an entanglement measure is known only for a pair of two-level systems [52, 53].

The two-qubit EOF can be calculated from their density matrix ρ(t) using the formula
[52, 53]

E[ρ(t)] = E[ρ(t)] = −x+ log2 x+ − x− log2 x−, (15)

where x± = (1±
√

1− C2[ρ(t)])/2, and C[ρ(t)] is called the Concurrence, given by

C[ρ(t)] = max(0, λ0 − λ1 − λ2 − λ3), (16)

where λi are the square roots of the eigenvalues of the matrix ρ(t)(σy ⊗ σy)ρ∗(t)(σy ⊗ σy) in
decreasing order. ρ∗(t) denotes the complex conjugate of the density matrix ρ(t). Note that
the Concurrence is also an entanglement measure. It is commonly used to quantify two-qubit
entanglement because of the mathematical simplicity with which it is calculated.

Entanglement decay of a two excitonic qubits [D3] Two excitonic qubits interacting
with a phonon baht are described by the Hamiltonian (6). The two-qubit evolution can be
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Figure 4: Evolution of entanglement of the
two-qubit system at various temperatures
with d = 6 nm (a,b) and for various dis-
tances d at T = 100 K (c,d). The left
panels (a,c) show the result for the initial
state (17a) and the right ones (b,d) for the
singlet state (17b). The inset in (c) shows
the lowest temperature at which the decay
becomes complete for a given distance. Solid
lines correspond to ∆E = 0 and the dashed
line to ∆E/~ = 6 ps−1 (at T = 40 K).

found using the Weyl operator method (3). Once the evolution is found, the decay of entan-
glement can be calculated using the Concurrence 16) or the EOF (15).

The evolution of the EOF of the qubit pair initially in one of the two maximally entangled
states

|ψ0〉 =
1

2
(|00〉+ |01〉+ |10〉 − |11〉), (17a)

|ψB〉 =
1√
2

(|01〉 − |10〉). (17b)

is shown in Fig. 4. In the absence of energy shift ∆E (solid lines), entanglement decays on a
time scale of a few picoseconds. At low temperatures or for overlapping systems, this process
resembles the decay of coherences in a single system under the same environmental influence
[54]. However, for a sufficiently large separation between the systems and at sufficiently high
temperatures the initially maximal entanglement present in the state (17a) decays completely
after a finite time even though the environment-induced dephasing is always only partial (see
Fig. 4a,c). The temperature Tc at which the systems get completely disentangled is related to
the distance as shown in the inset in Fig. 4c. On the other hand, for the other initial state
[Eq. (17b)], the destruction of entanglement is always only partial (Fig. 4 b,d).

An important case is that of ∆E 6= 0. Such an energy shift (known as biexcitonic shift
in semiconductor system) leads to an entanglement-generating evolution. This mechanism
is used for performing nontrivial two-qubit gates (controlled-shift) in many proposals for
semiconductor-based quantum information processing [55, 56]. As can be seen in Fig. 4 (dashed
line), in the presence of phonon-induced pure dephasing the cyclic evolution of entanglement
is damped and the maximum achievable level of entanglement is reduced. Moreover, extended
periods of time appear when the entanglement remains zero.

The appearance of complete disentanglement for some initial states under sufficiently strong
partial pure dephasing may be understood with the help of Eq. (16). If the completely dephased
state (with a diagonal density matrix) has λ0−λ1−λ2−λ3 < 0 then, by continuity, it will be
surrounded by states with vanishing concurrence so that entanglement vanishes for sufficiently
strongly dephased states, before the complete dephasing is reached. Form the Wootters formula
for a diagonal density matrix one finds λ0−λ1−λ2−λ3 = −2 min(ρ00ρ33, ρ11ρ22), so that the
above condition may only be satisfied if all four diagonal elements are nonzero, which is the
case for the initial state (17a) but not (17b).

The decay of effective entanglement of two excitonic qubits [H2]. In earlier analysis
of entanglement evolution, it was assumed that the observer has the power to perform arbitrary
measurements and can determine the state of the system completely. This is however not always
true. In particular, there are natural systems, like QDs, where limited measurement power is a
natural and practical constraint (ie. single electron transistors (SETs) coupled to QD systems
can be used to find a limited amount of information about the QD state [57, 58]). In all such
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cases of limited measurement capability, it is natural to consider the worst case scenario: as
real entanglement, one should consider the entanglement (i.e. chosen entanglement measure)
minimized over the set of measurement data. The minimized entanglement will subsequently
be called effective entanglement.

Here, the system is identical to the one considered in the previous paragraph. The limita-
tions to the knowledge of the system state imposed by a realistic measurement setup (consisting
of different configurations of SETs interacting with the double-dot system) are taken into ac-
count. This measurement scheme does not allow for state tomography and provides, in fact, a
very limited set of observables. In each time-step we minimize the value of entanglement with
respect to the data which can be measured and find the evolution of the effective entanglement
with respect to the SET-defined observables, for the sake of clarity. The set of attainable
observables is given by

x = 〈00|ρ|00〉+ 〈01|ρ|01〉, (18a)
y = 〈00|ρ|00〉+ 〈10|ρ|10〉, (18b)
z = 〈01|ρ|01〉+ 〈10|ρ|10〉+ 2Re〈01|ρ|10〉, (18c)
d = 〈11|ρ|11〉; (18d)

the physical justification for such a choice is given in Ref. [H2].
Firstly, the situation is considered, when a number of SETs provide all possible information

that can be gained about the state of the double QD with this measurement technique. Since
all of the diagonal density matrix elements are known, the set of initial maximally entangled
states which cannot exhibit sudden death of effective entanglement is the same as the set
of states with real off-diagonal density matrix elements which do not exhibit sudden death
of physical entanglement [D3]. The time evolution of effective and physical entanglement in
these states under pure dephasing is the same. The situation is different for states where all
diagonal density matrix elements are non-zero where the set of effectively entangled coherent
states is substantially reduced.

Secondly, the situation is considered when only x and z have been measured, so only
linear combinations of some density matrix elements are known. The measurement outcome
x ∈ [0, 1]. The outcome z ∈ [0, 2], but it is easy to show that for non-zero effective entanglement
z > 1. It is interesting to consider here the time-evolution of effective entanglement under
phonon-induced pure dephasing of an initially maximally entangled state |+〉, with |±〉 =
(|01〉 ± |10〉)/

√
2. When measured it will yield x = 0.5 and z = 2, so the effective concurrence

Ce(|+〉〈+|) = 1 (note that the state |−〉 has x = 0.5, but z = 0 and Ce(|−〉〈−|) = 0). Phonon-
induced evolution of the state does not change x, but z decreases with decreasing Re(h) leading
to sudden death of effective entanglement for sufficiently dephased states. This state does not
exhibit sudden death of physical entanglement.

Thirdly, the simplest situation is considered, where the measurement data yield only z
as defined in Eq. (18c). The amount of information gained by the measurement is very
limited. The dependence of effective entanglement on z is plotted in the inset of Fig. 5. The
evolution of effective entanglement of the initial state |+〉 in this setup under realistic phonon-
induced pure dephasing is plotted in Fig. 5 for different temperatures. As is to be expected,
effective disentanglement occurs faster than physical disentanglement. Furthermore, sudden
death of entanglement appears for sufficiently high temperatures (e. g., when the dephasing
is strong enough). For a limited range of temperatures, sudden birth of entanglement is also
observed. The second phenomenon is due to the enhancement of coherence which occurs when
wavepackets from the two QDs meet due to positive interference between them; this mechanism
does not lead to the sudden birth of physical entanglement [D3].

Entanglement decay of QD spin qubits [H5]. In the following, the evolution of entangle-
ment of two non-interacting electron spin qubits confined in two well separated self-assembled
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GaAs QDs is studied. The qubits interact with separate nuclear spin reservoirs via the hyper-
fine coupling, which are both taken in the high-temperature thermalized state. The setup is
described by the Hamiltonian (13) and the method of finding the evolution of the state of the
QDs is outlined in a previous section.

The study is restricted to initial Bell states,

|Ψ±〉 = 1/
√

2(|1〉 ± |2〉), (19a)
|Φ±〉 = 1/

√
2(|0〉 ± |3〉), (19b)

where the states in the single QD basis are equal to |0〉 = | ↑↑〉, |1〉 = | ↑↓〉, |2〉 = | ↓↑〉, and
|3〉 = | ↓↓〉. The evolution of the coherences for these initial states is limited to the single off-
diagonal element of the density matrix which is initially non-zero, while the other coherences
remain zero at all times. Contrarily, all four occupations are influenced (except for the high-
magnetic-field limit where the decoherence is a pure dephasing process) by the interaction.
Hence, the double QD density matrix is simplified and the concurrence is always of the form,

C(ρDQD) = 2 max{0, |ρij | −
√
ρkkρll}, (20)

where i, j are equal to 1, 2 or 0, 3 depending on the initial state, and k 6= l, k 6= i, k 6= j,
l 6= i, l 6= j. It is evident from Eq. (20) that sudden death of entanglement will occur when
|ρij | <

√
ρkkρll, so sudden death is expected in the low magnetic field regime when the QD

occupations are disturbed, while it will not occur for high magnetic field pure dephasing.
Furthermore, because the qubits interact with separate environments at high temperature
thermal equilibrium, the evolution of entanglement is the same for all four initial Bell states.

Fig. 6 shows entanglement decay for different magnetic field values. The zero magnetic field
curve (red solid) limits all higher magnetic field curves from below and ends in SD. The high
magnetic field curve (dashed/dotted blue line), provides the upper limit for the concurrence
at a given time and undergoes exponential decay. In between, the curves corresponding to
small magnetic fields display a more complex entanglement evolution. According to Eq. (20),
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the visible oscillations are due to the interplay of the dephasing process and the shifts in the
occupations. The number of oscillations increases with the increase of the magnetic field, while
they become less pronounced, because the high magnetic field inhibits occupation changes. The
suppression of the oscillations is a manifestation of the transition between the two types of
disentanglement.

It is due to those oscillations that the SD times are not a monotonous function of the
magnetic field, as seen in Fig. 7. At low magnetic fields, a strong oscillatory behavior is
evident, starting from around 10 mT. For higher magnetic fields, ρij decays as exp[−σ2t2],
while ρkk = ρll, which initially equals 0, oscillates with the amplitude proportional to σ2

B2 ,
where σ2 ∼ A2/N . The equality between the two, responsible for SD of entanglement, gives

an estimated tSD ∼
√

2 ln B
σ /σ valid for high magnetic fields.

The quantity W (t) = F − 1
2 = 〈Ψ−|ρ(t)|Ψ−〉− 1

2 (which is an entanglement witness) allows
the identification of the exact time sudden death of entanglement occurs, which corresponds
to W (t) = 0. This means that the zero point t∗ of W (t) (W (t∗) = 0) is just a sudden death
time (t∗ = tSD and as such has exactly the same dependence on the magnetic field as shown
in the Fig. 7). Quite remarkably, W as an entanglement witness is directly measurable. Thus
by measuring this quantity we may get the exact estimate of the magnetic field whenever it
corresponds to the initial monotonic regime of the function. In the regions close to the steep
parts of the function the above value is quite sensitive to the field B and can be considered as
a threshold sensor of the latter. Thus by measuring this quantity we may get the estimate of
the magnetic field. In the regions close to the steep parts of the function the above value is
quite sensitive to the field B and can be considered as a threshold sensor of the latter in the
regime between 5 mT and 10 mT for the QD parameters considered.

Quantum discord. The quantum discord [59, 60], a measure of bi- and multi-partite quan-
tum correlations, has attracted much attention recently. This is due to the fact that the discord
indicates the existence of quantum correlations in many partially mixed states which have no
entanglement present. Specifically, the quantum discord does not display any sudden death
type phenomenon, since the set of zero-discord states has no volume [61]. Hence, a smooth,
continous decoherence process, such as pure dephasing cannot lead to a sudden and contin-
ued dissapearance of quantum correlations mid-evolution (before a fully mixed, completely
dephased state is reached). This suggests that the sudden death of entanglement signifies not,
as was previously believed, the dissapearance of all quantum correlations, but the crossing of
a threshold of a given, small amount of correlations. Although beneath this threshold many
quantum informational tasks may no longer be performed, methods of performing quantum
computation on zero-entanglement states for which the quantum discord is non-zero have al-
ready been devised [62, 63, 64]. Furthermore, it has been very recently shown experimentally
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how entanglement can be shared between distant parties via non-entangled states with non-zero
discord [65].

The quantum discord is defined as the difference between two classically equivalent formulas
for mutual information [59]. The formula which is referred to as mutual information in Ref. [66]
is given by [59]

I(ρAB) = S(TrA ρAB) + S(TrB ρAB)− S(ρAB), (21)

where the von Neumann entropy is given by S(ρ) = −Tr ρ log2 ρ. This quantity has been
generalized from the classical language of probability distributions in a straightforward manner
to the language of dencity matrices, while the Shannon entropy was replaced by von Neumann
entropy. The other formula for classical mutual information, which is in the quantum context
referred to as classical correlations (in Ref. [66]), cannot be generalized in a direct manner,
because the classical formula involves conditional entropy,

C(A : B) = H(A)−H(A|B),

where H denotes the Shannon entropy and A and B are random variables. Conditional entropy
H(A|B) requires the specification of the state of A given the state of B, which in quantum
mechanics is ambigous until the measurement performed on B is specified. Hence, the condi-
tional von Neumann entropy can be found given the complete measurement on subsystem B
and the resulting formula for classical correlations is [59, 60]

C(ρAB) = max
{Πk}

[S(Tr ρAB)− S(ρAB|{Πk})] , (22)

where {Πk} is a complete set of orthonormal projective operators corresponding to a von Neu-
mann measurement of subsystem B. The index k denotes the outcome of a given measurement
and the formula involves maximization over the set of projective measurements. Therefore the
formula of Eq. (22) yields the information gained about the system A after the measurement
{Πk} on system B. The quantum discord of a given state ρAB is then given by

D(ρAB) = I(ρAB)− C(ρAB). (23)

Unfortunately, computing the quantum discord for an arbitraty density matrix is an ex-
trememely involved task even in the simplest two-qubit case. This led to the emergence of the
geometric quantum discord [67], which is defined as the minimal Hilbert-Schmidt distance of
a given state from the set of zero-discord states. Although an explicit formula for the geo-
metric discord given a two-qubit density matrix does not yet exist (one that does not require
minimization over the set of all zero-discord states), such formulas exist for the lower [67] and
upper [68] bounds on the geometric discord.

The lower bound on the discord is given by [67]

D′S = max (Tr[Kx]− kx,Tr[Ky]− ky) , (24)

where kx is the maximum eigenvalue of the matrix Kx = |x〉〈x|+TT T and ky is the maximum
eigenvalue of the matrix Ky = |y〉〈y| + T TT . Here, |x〉 and |y〉 denote local Bloch vectors
with components xi = Tr[ρAB(σi ⊗ I)] and yi = Tr[ρAB(I ⊗ σi)], and the elements of the
correlation matrix T are given by Ti,j = Tr[ρAB(σi ⊗ σj)] (stemming from the standard Bloch
representation of a two-qubit density matrix ρAB). The upper bound is given by [68]

D′′S = min (Tr[Kx]− kx + Tr[Ly]− ly Tr[Ky]− ky + Tr[Lx]− lx) , (25)

where lx and ly are the maximal eigenvalues of the matrices Lx = |x〉〈x| + T |k̂y〉〈k̂y|T T and
Ly = |y〉〈y| + T T |k̂x〉〈k̂x|T , respectively, while |k̂x〉 and |k̂y〉 are the normalized eigenvectors
corresponding to the eigenvalue kx of matrix Kx and ky of matrix Ky. In the case of symmetric
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two-qubit states, meaning ρAB = ρBA, no minimization or maximization is needed in eqs. (24)
and (25).

The upper and lower bounds often coincide, yielding the true value of the geometric discord.
This is specifically the case for pure states, Bell diagonal states, and states with vanishing
local Bloch vectors, |x〉 = |y〉 = 0 [68]. Hence, it is straightforward to show that the geometric
discord is equal to 1/2 for all maximally entangled two-qubit states [69],

|ψ〉 = 1/
√

2(a|00〉+
√

1− a2eiα|10〉+
√

1− a2eiβ|01〉 − aei(α+β)|11〉). (26)

Here a ∈ [0, 1], while α and β are arbitrary.
The geometric discord is a good measure to distinguish between zero-discord and non-zero-

discord states, but because of the properties of the Hilbert-Schmidt distance, it is not a good
measure for the amount of quantum correlations present in a given state. In fact, because
the Hilbert-Schmidt distance is sensitive to the purity of the state, the geometric discord may
be increased by non-unitary evolution of a single qubit (the unmeasured one) [70, 71], which
should not increase inter-qubit quantum correlations.

One solution of this problem has been proposed in Ref. [72]. It turns out that to diminish
the sensitivity of the Hilbert-Schmidt distance to the purity of the states, it suffices to normalize
each state by its Hilbert-Schmidt norm, namely to define a distance between two states ρ1 and
ρ2 as

dT (ρ1, ρ2) =

∣∣∣∣∣∣∣∣ ρ1

||ρ1||
− ρ2

||ρ2||

∣∣∣∣∣∣∣∣ , (27)

where || · || is the Hilbert-Schmidt norm. The rescaled discord is then defined as the distance
between a given state and the nearest zero-discord state, using the distance measure (27) and
for a two-qubit state it is found to be

D(ρ) =
1

2

(
1−
√

3

2

)[
1−

√
1− DS(ρ)

2 Tr ρ2

]
. (28)

Here, DS(ρ) denotes the geometric discord and Tr ρ2 is the purity of the studied state.

The evolution of the quantum discord of excitonic qubits [H3]. Here, we study the
evolution of the lower and upper bounds of the geometric discord [see Eqs (24) and (25)] of two
excitonic qubits interacting with an open phonon environment in order to capture the physical
aspects of decoherence effects on quantum correlations. The specific system under study is
described by the Hamiltonian (6) and the evolution is obtained as described before.

As it turns out, the geometric discord for initial Bell states under any pure dephasing
process is equal to DS(t) = 2|ρij(t)|2 since they retain their Bell-diagonal form throughout the
evolution. Here, ρij denotes the off-diagonal element of the two-qubit density matrix which is
non-zero. Note that up to a normalization factor, the value of the geometric discord in this
case yields the square of the Concurrence.

Let us first study the evolution of the mixed X-state,

ρ =


a 0 0 ag03(t)
0 b bg12(t) 0
0 bg∗12(t) b 0

ag∗03(t) 0 0 a

 , (29)

which is significantly simpler, but already carries some of the properties of the discord evolution
of a pure initial state with all coherences present. The entanglement of such a state, measured
by the concurrence, is equal to C(t) = max{0, b|g12(t)|−a, a|g03(t)|−b} and is prone to sudden
death. The geometric discord is given by

DS(t) =

{
(a|g03(t)| − b|g12(t)|)2 + (a− b)2, for |a− b| < a|g03(t)|+ b|g12(t)|

2a2|g03(t)|2 + 2b2|g12(t)|2, for |a− b| > a|g03(t)|+ b|g12(t)|. (30)
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Figure 8: Evolution of geometric dis-
cord bounds at d = 6 nm for pure ini-
tial state (26) with a = 1/

√
2 (a,b)

at different temperatures for ∆E = 0
for which the upper and lower bounds
are equal (a) and at 77 K for ∆E = 6
ps−1; red solid line - lower bound, blue
dashed - upper bound, pink dotted -
∆E = 0 (b). Lower bound values
corresponding to the three eigenval-
ues of the matrix Kx (the minimum
of which yields the geometric discord
lower bound) at different temperatures
for zero biexcitonic shift (c) and and at
77 K for ∆E = 6 ps−1 (d).

Hence, the discord will not undergo sudden-death-like behavior, but, if a 6= b, it will display
a transition between two types of decay (there is no simple relation between the transition
point and the point of entanglement sudden death). The transition point coincides with the
transition point between quantum and classical decoherence indicated in Ref. [66].

The next step is to study the evolution of the lower and upper geometric discord bounds
for an initial state (26) with all non-zero coherences (a 6= 0 and a 6= 1) under phonon-induced
partial pure dephasing. For simplicity the studied state is taken with a = 1/

√
2 (the local

phases α and β do not change the values of the geometric discord or either of its bounds). On
Fig. 8 (a) the evolutions of the geometric discord are plotted at different temperatures for zero
biexcitonic shift (the upper and lower bounds are equal in this case). The 3 K curve shows a
distinct point where the discord is not smooth, resembling the evolution of the X-state (29),
which is absent at higher temperatures. To understand this, the evolutions of Di = Tr[Kx]−ki,
where ki are the three eigenvalues of the matrix Kx (the minimum of Di yields the true lower
bound of the geometric discord) for 3 and 77 K are plotted in Fig. 8 (c). At 3 K a crossing of
two Di curves is observed which is caused by the positive interference of phonon wave packets,
which is responsible for the enhancement of the geometric discord for the X-state of eq. (29).

Fig. 8 (b) shows the evolution of the lower (red solid line) and upper (blue dashed line)
bounds on the geometric discord for the same initial state at 77 K when the biexcitonic shift
is nonzero. The biexcitonic shift in the absence of any decoherence processes causes a co-
herent oscillation between the initial, maximally entangled state, and the separable state
|ψsep〉 = 1/2(|0〉 + |1〉) ⊗ (|0〉 + |1〉) (reached when ∆Et = (2n + 1)π, where n is a natural
number). Under phonon-induced pure dephasing, the oscillations of entanglement are damped
and display prolonged periods when the entanglement is zero (which is only possible when
the damping process can lead to sudden death of entanglement), and are otherwise smooth
while their amplitude is limited by the entanglement decay displayed by the zero-biexcitonic
shift evolution [D3]. The oscillations of the geometric discord, which without decoherence
would mimic entanglement oscillations, are substantially different. Firstly, the discord does
not display sudden-death-type behavior. Furthermore, the evolution of the quantum discord
induced by the biexcitonic shift leads to the situation, when the value of the geometric discord
is greater than the corresponding zero-biexcitonic-shift value. This shows that the dependence
of the discord on quantum phase relations is non-trivial, and than non-local phase correlations
may lead to an enhancement of quantum correlations in mixed states depending on the actual
value of the phase factor.

Although the studied quantity here was the geometric discord, note, that rescaling all of
the presented results using Eq. (28), which would yield the rescaled geometric discord which is
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Figure 9: Time-evolution of the
rescaled discord of the initial Bell
state for different magnetic fields:
B=0 (solid red line; lower bound on
the plots), B=11 mT (dashed green
line), B=16.5 mT (dotted magenta
line), B= 1T (blue dashed-dotted
line). The inset shows long-time
evolution, revealing partial revival of
the discord for small magnetic fields:
B=0 (solid red line) and B=3 mT
(orange dashed line).

insensitive to the purity of the studied two-qubit state, would not change any of the qualitative
behaviour of the discord evolution which is presented above.

The evolution of the quantum discord of QD spin qubits [H6]. Let us return to the
of two electron spins confined in two, well separated lateral QDs interacting with a nuclear
bath as descibed by the Hamiltonian (13). Bell states (19) are natural fully entangled states to
be studied in a double spin-in-a-QD system (as in many other realistic scenarios), since they
are initialized more easily than other entangled states. Their evolution is always Bell diagonal,
hence the density matrix of the two-qubit system is of the form

ρDQD(t) =


1
2 − a(t) 0 0 0

0 a(t) b(t) 0
0 b∗(t) a(t) 0
0 0 0 1

2 − a(t)

 . (31)

The initial conditions for any Bell state are a(t) = 1/2 and b(t) = ±1/2, with the basis states
in the density matrix (31) arranged in the order |0〉, |1〉, |2〉, |3〉 for initial states (19a) and in
the order |1〉, |0〉, |3〉, |2〉 for initial states (19b).

Since the lower and upper bounds on the rescaled discord D coincide for any Bell diagonal
state, they coincide throughout the hyperfine-interaction induced evolution of any initial Bell
state. Furthermore, analytical formulas for the values of DS can be found in a straightforward
manner for this type of evolution, which can then be extended using Eq. (28) to yield the
value of D. Indeed the formula for the geometric quantum discord reads

DS(ρDQD(t)) =

{
2|b(t)|2 for g(t) ≤ 1,[

1
2 − 2a(t)

]2
+ |b(t)|2 for g(t) ≥ 1,

(32)

where
g(t) =

2|b(t)|
|1− 4a(t)|

. (33)

The purity necessary to find the rescaled discord is equal to

P (ρDQD(t)) = 2

[
(
1

2
− a(t))2 + a2(t)

]
+ 2|b(t)|2. (34)

Note, that rescaling DS , although it affects the curves of the time-evolution, does not change
the transition point between the two regimes of the discord decay.

Fig. (9) shows the time-evolution of any initial Bell state for different magnetic field values.
Contrarily to the time-evolution of entanglement of the same system [H5], oscillations of the
rescaled discord D are hardly visible. Furthermore, although the values of D are limited from
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below by the zero-magnetic-field curve as in the case of entanglement, they are not limited
from above by the infinite-magnetic-field line (contrarily to entanglement). This is due to the
shape of the decay of the amplitude of the single coherence present, |b(t)|, which is weakly
enhanced or slowed by the oscillations of the QD occupations. At long time scales, which are
shown in the inset of Fig. (9), a small revival of the discord is observed at very low magnetic
fields (seen for B = 0 T and B = 3 mT), which originates from the small revival of the
coherence characteristic of low magnetic fields and the zero-volume quality of the zero-discord
states which makes discord revivals very common.

It turns out that regardless of the magnetic field, the decay of the discord for initial Bell
states is always confined to the g(t) ≤ 1 limit, where the value of the geometric discord is pro-
portional only to the square of the amplitude of the coherence (which is then rescaled according
to Eq. (28) to get the rescaled discord).This is explained in terms of energy conservation in
[H6].

For zero-magnetic-field, although the coherence experiences an involved evolution pattern,
including a revival after the initial strong decay is complete, the coherence and the occupations
always satisfy the relation g(t) = 1. For non-zero magnetic field, the dephasing is faster than
the decay of occupations, thus g(t) < 1 for all times except t = 0.

Note that the behavior of the discord evolution for long times shows strong dependence on
small magnetic fields in the range 0−5 mT (see inset of Fig. 9). The ability to perform precise
rescaled discord measurements would enable one to detect small magnetic fields. The proposed
procedure would expand the region of applicability of a QD magnetic sensor to the region of
magnetic fields inaccessible to the entanglement based procedure. Here, entanglement is not
required as a necessary resource for these long-time measurements - the results can be obtained
using X-states (29) with zero entanglement and non-zero discord.

The idea sketched above is not the only possibility of detecting small magnetic field values
taking advantage of the rich characteristics of the decoherence driven discord evolution. Other
possibilities are discussed extensively in Ref. [H6].

4.3.6 QPC measurement of double QD spin states and phonons [H4, H7]

QPC measurements of charge states. The quantum point contact (QPC) [73] measure-
ment of charge states in a lateral double QD defined by gate potentials in a two dimensional
electron gas involves monitoring the current flowing through the QPC which depends on the
occupation of the QDs due to a Coulomb interaction between the electrons confined in the QD
and electrons traveling through the QPC [74, 57]. This measurement scenario is a realization
of the so called weak measurement [38], where the measured system is only weakly coupled
to the measuring device. Contrary to the projective measurement, this measurement is not
instantaneous, as both the localization of the QD states into the measurement basis and ac-
quiring the data needed to distinguish between the basis states take time. Apart from the
measurement time, another relevant factor is the attainable distinguishability of states, since
even after an infinitely long measurement time it may not be possible to completely distinguish
between the measurement basis states. On the other hand, a weak measurement is typically
less destructive to the measured system than an instantaneous projective measurement. Fur-
thermore, such a measurement is the only option in many involved quantum systems which
are hard to access experimentally. Hence, the QD-QPC measurement setup is commonly used
experimentally to study QD occupations at very low temperatures [75, 76, 77, 78, 79, 80, 6].
As we have previously shown, phonon effects do not interfere with the charge measurement
in any significant way [E4], since while they strongly affect the coherence times of QD states,
phonons do not affect the localization times or the distinguishability between the measurement
basis states in this setup.
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Figure 10: Schematic representation of
the changes of the QPC barrier height
due to Coulomb interaction with differ-
ent spatial configurations of the three
spatially distinct double QD spin singlet
states. The top part shows the QPC bar-
rier height corresponding to the occupa-
tion of the double QD represented in the
bottom part of the figure. The two dou-
bly occupied states are superpositions of
configurations with charges adjacent or
remote from the QPC which results in
fluctuations of the QPC barrier.

QPC measurement of singlet-triplet spin qubits. The measurement of spin states of
electrons confined in QDs is much more complicated and typically involves spin-to-charge
conversion prior to a QPC measurement of the charge [76, 79, 6, 8]. An alternative scheme for
the direct measurement of the spin symmetry (singlet-triplet) of two-electron states confined
in a double QD was proposed in Ref. [74]. Here, the quality of the measurement relies on
QPC current noise being different for the singlet and triplet spin symmetries. The disparity
of current fluctuations is due to the fact that, according to Pauli exclusion principle, states
with both electrons localized in the same QD are allowed in the spin-singlet configuration,
but not for spin-triplet case. Hence, the electron charge distribution will fluctuate during the
measurement process due to the QD-QPC interaction only if the electrons are in the spin-singlet
state, leading to enhanced QPC current noise for this spin configuration.

The Hamiltonian of the double QD system with two electrons is given by Eq. (10). The
eigenstates of this Hamiltonian are the three spin triplet states given by Eqs (11) and the three
spin singlet states given by Eqs (12), which allow for double QD occupations.

The QPC is situated near one of the QDs in such a way that it is sensitive to the occupation
of only this one (right) dot. The double QD-QPC interaction is described by the Hamiltonian

Htun =
∑
p,q,σ

(Tpq + χpqnR)a†SpσaDqσ + H.c., (35)

which accounts for the tunnelling of electrons through the QPC and contains a factor dependent
on the occupation of the right dot, nR. Hence, electron tunnelling consists of a robust part,
independent of the QD occupation described by the constants Tpq, and a Coulomb interaction
induced enhancement χpq. The tunnelling constants are assumed to be slowly varying over
the energy range where tunnelling is allowed [82, 74] and are taken constant. Here, anpσ,
a†npσ are the QPC electron annihilation and creation operators corresponding to an electron in
lead n = S,D (source, drain) and in mode p, with the distinction of spin σ which is constant
throughout the tunnelling. In this paper, we study a QPC which operates in the high bias
regime, that is, in the situation when the chemical potential offset between the leads is large
enough to induce transitions to doubly excited states [74].

The evolution of the double QD system is found using the Lindblad master equation,

ρ̇(t) = L(ρ) = − i
~

[HDQD, ρ] +
1

~2

(
3∑
i

1

2
(C†iCiρ+ ρC†iCi) +

3∑
i

CiρC
†
i

)
(36)
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where the Lindblad operators are given by [74]

C1 = ν

√
V −∆

~
sin

θ

2
|(−)S〉〈S−|, (37a)

C2 = ν

√
V + ∆

~
sin

θ

2
|S−〉〈(−)S|, (37b)

C3 =

√
V

~

[
(T + ν)I + ν cos

θ

2
(|S+〉〈(−)S|+ |(−)S〉〈S+|)

]
, (37c)

and V = (µS − µD) voltage applied to the QPC, T =
√

4πgSgDT is the tunneling constant,
(T = Tpq), and ν =

√
4πgSgDχ is the tunneling constant which depends on the occupation

of the right QD (χ = χpq). gi is the density of states of lead i = S,D, while ∆ is the energy
difference between states |S−〉 and |(−)S〉.

Phonon influence on the QPC measurement of singlet-triplet qubits [H4]. The
electron-phonon interaction Hamiltonian is given by the Hamiltonian (??). In this case, it is
the real transitions between double QD state which are of interest. Hence, the evolution may
be described using the Lindblad equation, similarly as for the electrons tunneling through the
QPC.

Including the electron-phonon interaction requires adding an additional part to the Lind-
blad master equation (36). This is

Lph(t) =
1

~2

(
4∑
i

1

2
(B†iBiρ+ ρB†iBi) +

4∑
i

BiρB
†
i

)
. (38)

The phonon Lindblad operators are of the form

B1 =
√
γ02|S−〉〈(−)S|, (39a)

B2 =
√
γ20|(−)S〉〈S−| =

√
γ02e−(U+J)/kBT |(−)S〉〈S−|, (39b)

B3 =
√
γ12|S+〉〈(−)S| =

√
γ21 e−J/kBT |S+〉〈(−)S|, (39c)

B4 =
√
γ21|(−)S〉〈S+|, (39d)

where the transition rates are found using Fermi’s golden rule and are given by γij = 2πRij(ωij),
where ~ωij is the energy difference between the two states corresponding to the transition
described by the given Lindblad operator. The relevant spectral densities are given in Ref. [H1].
At zero temperature, phonons induce transitions only from higher energy states to lower energy
states so γ20 = γ12 = 0

The time evolution of the double QD system averaged over all possible single measurement
runs is found by solving the above generalized master equation. Yet modern experimental
techniques allow one to observe single system evolutions[80, 79, 83] which cannot be reproduced
by this approach. To describe such single runs, probabilistic elements need to be introduced
into the evolution following Refs [84, 26, 85, 86, 57, 74, 87].

The results presented are taken in the zero temperature limit which corresponds to exper-
imental realizations of QPC measurements typically performed at temperatures that do not
exceed 0.1 K, leading to extremely low phonon transition rates from lower to higher energy
states. Fig. 11 shows exemplary time evolutions of the probability of finding the double QD
in a spin-singlet state (green, dashed lines) or a spin-triplet state (red, solid) for an initial
equal superposition of any triplet state and the singlet state 1√

2
(| ↑↓〉 − | ↓↑〉). The top panels

show instances where the final state is a spin-triplet (the measurement outcome was the triplet
state), while the bottom-panel evolutions ended up in the spin-singlet state (the measurement
outcome was the singlet state). The electron-phonon interaction is included only in the right
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Figure 11: Exemplary singlet (green,
dashed) and triplet (red, solid) probabil-
ity time-evolutions for final triplet (a, b)
and singlet (c, d) states, without (a, c)
and with the phonon interaction (b, d).
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Figure 12: QPC current as a histogram of tunneling events for triplet (a, b) and singlet (c, d)
states, without (a, c) and with the phonon interaction (b, d). The time interval used for the
histogram is 0.66 µs.

panels; the phonon influence on coherence and localization is studied in more detail later on.
As seen, regardless of the presence of the electron-phonon coupling, the continuous evolution
leads to double QD localization in the triplet spin state (see Fig. 11 a, b), while for there to
be a measurement of a singlet spin state, the occurrence of a quantum jump is required.

The simulation results for the QPC currents corresponding to the final singlet and triplet
states are shown in Fig. 12. Even through the evolutions depicted in Fig. 11 show no clear
difference between the phonon and no-phonon cases, in the phonon-free situation in Fig. 12 (left
panels) a difference in the magnitude of the current fluctuations (noise) can be seen between the
singlet and triplet case, while no such distinction is evident in the current when the phonon
influence is included. For the realistic choice of material parameters, QPC and double QD
properties, and for our choice of counting time step, the differences are relatively small, but
still a period of time (after about 110 microseconds) when the double QD electrons occupy
higher energy singlet states resulting in increased current fluctuations can be seen (Fig. 12
c). When the phonon coupling is included (Fig. 12 b, d) this distinction is diminished (to the
level that no time period of increased fluctuations can be seen with the “bare eye”), so the
measurement effect is suppressed.

Clearly, such observations based on the informal analysis of the current noise trace are to a
large extent subjective and cannot form the base for rigorous conclusions on the measurement
outcome or for assessing the role of phonon-induced dissipation. In order to provide a firm
ground for such a discussion, the dependence of the Fano factoro [88, 89], which is defined as the
zero frequency noise power divided by the noise power corresponding to a given mean current
for Poissonian noise, is studied as a function of the relative strength of the electron-phonon
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Figure 13: Steady state Fano factor for
the QPC current as a function of the rel-
ative strength of the electron-phonon in-
teraction for singlet (green dashed line)
and triplet states (red solid). Inset: Nor-
malized singlet steady state noise power
spectra of the QPC detector current with-
out (violet dashed line) and with electron-
phonon interaction (blue solid), α = 1.5.
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Figure 14: The Fano factor for
a relatively strong electron phonon-
interaction, α = 3, as a function
of temperature (red, solid line); no-
phonon Fano factor (blue, dotted line).
Inset: The Fano factor as a function
of the strength of the electron-phonon
interaction relative to the double QD-
QPC interaction, α, for different tem-
peratures. In both plots, the dashed
grey line is set at Fano factor equal to
one (Poissonian noise).

and double QD-QPC interactions.
Fig. 13 shows the singlet and triplet Fano factor curves as a function of the relative coupling

strengths of the double QD to the phonon reservoir and to the QPC. For the sake of realism
it is the tunneling parameters of the QPC which are changed, while the electron-phonon
interaction is kept at a value corresponding to realistic gate defined QDs. The scaling parameter
α = T0

T = ν0
ν , with T0 = 0.1 and ν0 = 2.25·10−3, is chosen in such way that α = 1 corresponds to

the situation when the interaction with phonons is roughly the same strength as the interaction
with the QPC; this means that √γ02 = ν0

√
V/~. As can be seen, the phonons dominate at

large α (small QPC current) leading to a suppression of the noise difference and breaking
of the measurement scheme, while for large currents their effect is negligible. Note that the
results discussed earlier correspond to the QPC interaction strength α = 2.5. Even though
the phonon-induced suppression of the spin-singlet Fano factor at this moderate value of the
scaling parameter is small, the effects seen in Fig. 11 are already non-negligible.

Decoherence enhanced quantum measurement [H7] Fig. 14 shows the dependence
of the singlet Fano factor as a function of temperature for relatively strong electron-phonon
interaction at α = 3; Fano factor equal to one corresponding to the triplet state is marked
by the dashed grey line. Although at T = 0 phonons of such strength completely destroy the
distinguishability of the singlet and triplet state via QPC current noise (both singlet and triplet
Fano factors are equal to one), this is remedied already by a slight increase of the temperature.
At T = 8.5 K, the redistribution of the different singlet occupations is strong enough to restore
the Fano factor to the no-phonon value found (the no-phonon value of the Fano factor is marked
by the blue, dotted line). This is due to the rising importance of phonon-induced transitions
to higher energy, doubly occupied states which compensate for the transitions to the lower
energy, singly occupied state. Further increasing the temperature leads to an enhancement of
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the Fano factor beyond the no-phonon value. The effect of temperature is strong between 0
and 20 K, and then starts to slowly saturate, yielding already ample enhancement of the Fano
factor by 15 K, long before the excited QD states need to be taken into account.

This is further quantified in the inset of the figure where the Fano factor is plotted as a
function of the scaling parameter α, which is inversely proportional to the strength of the double
QD-QPC interaction, at different temperatures. Regardless of the temperature, phonon effects
are negligible when the double QD-QPC interaction dominates, near α = 0. Their importance
rises quickly, when the interactions become comparable, and then saturates slowly after the
interaction with phonons becomes twice as strong as the interaction with the QPC. Hence, the
interaction with phonons is relevant when the QPC is coupled weakly to the double QD, and
may serve to increase the effectiveness of the measurement in this situation.

At high enough temperatures, the electron-phonon interaction will cause transitions to
excited QD states. This will lead to double occupations in the triplet subspace in the situation
when one of the electrons is in the QD ground state, and the other is in the QD excited state.
The occurrence of transitions to such states will lead to fluctuations of the QPC current noise,
which will also become super-Poissonian. Although at not extremely high temperatures this
super-Poissonian character will be much weaker than in the singlet case, it could complicate
data interpretation. However, since the dependence on temperature is strong only for relatively
small temperatures, the high temperature range is of no experimental interest.

4.3.7 Summary

A series of papers titled ”The impact of the environment on the coherence and quantum corre-
lations of quantum dot ensembles" constitute the scientific achievement described above. The
series consists of eight articles, in which a diverse collection of problems involving spin and
charge states confined in quantum dots interacting with a phonon environment and a nuclear
environment has been considered. The two types of interactions have been studied because
they constitute the two basic quantum sources of decoherence in quantum dot qubits. The
predominance of a given decoherence type is dependent on the type of the qubit studied, and is
important since they lead to qualitatively different evolutions of qubit coherence, interqubit en-
tanglement, or interqubit quantum discord, as well as different methods to prevent decoherence
or utilize it.

In articles [H2, H3, H8] we studied phonon-induced decoherence of excitonic qubits. Such
decoherence leads to a characteristic partial pure dephasing which is the result of non-Markovian
processes. In articles [H1, H4, H7] we found and studied in the context of quantum measure-
ment a class of single- and two-phonon processes which lead to pure dephasing (two-phonon
processes) and relaxation (single-phonon processses) of singlet-triplet spin qubits. The two-
phonon pure dephasing is unavoidable since it persists even at very low temparatures. In the
remaining two papers, [H5, H6], we studied the decoherence of single-spin qubits resulting from
the hyperfine interaction between the electron spin (qubit) and the spins of the nuclei of the
surrounding atoms. Such decoherence is not of strictly pure dephasing character.

In term of the studied problems, the articles have to be divided in a different manner. The
papers [H2, H4, H5, H6, H7, H8] are all related to the subject of quantum measurements. In
article [H2] we have shown what can be learned about two-qubit entanglement in the situation
when a limited information about the system state can be acquired (the number of density
matrix elements which can be measured is limited). In articles [H4, H7] we have studied
the effect of decoherence on the measurement process itself and we found a way of utilizing
decoherence to enhance the distinguishability between measurement outcomes. In articles
[H5, H6] we have shown how to use the decay of quantum correlations to measure external
magnetic fields. In the paper [H8] we have in turn shown how to use quantum measurements
to prevent decoherence. In articles [H2, H5] we studied the decay of the type of quantum
correlations that are described by entanglement, while in articles [H3, H6] we studied the type
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of quantum correlations described by the quantum discord. In the article [90] a phonon-induced
decoherence mechanism for spin states has been found which cannot be prevented by the right
choice of material parameters or lowering the temperature. In the article [H7], on the other
hand, we found a situation for which the presence of decoherence has a constructive effect on
a measurement process.

As can be seen, the papers of the scientific achievement constitute a coherent collection,
despite their diversity. The experiences related to the study of different phenomena led to
a better understanding of the physics and processes which lead to decoherence, the decay
of quantum correlations. This in turn allowed for us to find methods to utilize and prevent
decoherence.
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5.1 Bibliometric data (from the 8th of September 2015)

No. of published scientific papers: 29
No. of citations: 215
No. of citations without self-citations: 175
Cumulative impact factor (according to JCR): 48.963
Hirscha index (according to Web of Science): 7
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5.2 List of articles not included in the habilitation thesis
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quantum dot molecules, Acta Phys. Pol. 116 (2009) 874.

33



[E7] K. Roszak, P. Machnikowski, Phonon induced pure dephasing of two electron spin states
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between exciton spin states in a quantum dot, Acta Phys. Pol. 114 (2008) 1329.

Unpublished papers avaliable on the archive:

[E10] K. Roszak, Ł. Cywiński, The relation between the quantum discord and quantum telepor-
tation: the physical interpretation of the transition point between different quantum discord
decay regimes, arXiv:1505.05741 (2015).

Rewiev chapters:

[E11] P. Karwat, K. Gawarecki, K. Roszak, A. Sitek, P. Machnikowski, Phonon-assisted pro-
cesses and spontaneous emission in double quantum dots, w: Quantum Dot Molecules, ed.
J. Wu, Z. M. Wang , Springer New York, New York, 2014, pp. 281-331.

Published conference presentations:

[E12] N. Ubbelohde, K. Roszak, F. Hohls, N. Maire,R. J. Haug, T. Novotný, Shot-Noise at a
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5.3 Description of the research conducted before obtaining the PhD

I began to conduct research before starting PhD studies with the analysis of phonon induced
decoherence in single qubit gates preformed via the STIRAP procedure [D8]. This involved
studies of the errors which occur in the gate operation due to the interaction with the environ-
ment. The main result of the article was identifying the parameter ranges for which the errors
are reduced.

With the beginning of the PhD studies I continued to study the interaction of QDs with
the surrounding crystal lattice, both in the context of quantum information theory and in the
context of the study of quantum open systems. Using the example of a single QD for which
phonon-induced effects lead to partial pure dephasing, I have shown that the decoherence
may be qualitatively and quantitatively interpreted in terms of information transfer between
the QD and the environment [D4]. A system of two QDs allowed me to study the decay of
entanglement during partial pure dephasing and to observe the differences in entanglement
decay in the regimes of a common environment and separable environments. It turned out
that sudden death of entanglement is only possible for a certain class of initial entangled states
under this type of interaction [D3].

The interaction between spins confined in QDs with phonons is indirect and is only possible
when the electron-phonon interaction is supplemented witha an interaction that mixes spin
and orbital degrees of freedom. This is the case for excitonic spin, when interplay of the Bir-
Pikus Hamiltonian and the short-range exchange interaction lead to the relaxation of a bright
excitonic state to dark states, which is an order of magnitude faster than other relaxation
mechanisms present in the system [D1].
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5.4 Description of the research conducted after obtaining the PhD, which
is not included in the habilitation

The article [E2] contains an experimental and theoretical description of the current noise
through a single QD in the Fermi edge singularity regime. The description of the noise is
impossible using the Markov approximation, but non-Markovian theory gives a very good
agreement with the experimental data. A detailed theoretical study of this effect in different
parameter ranges is the topis of Ref. [E3].

My current studies remain on the border between QD physics and quantum information
theory. Ref. [E10] contains a physical interpretation of the transition between regimes of
quantum and classical decohrence characteristic of the quantum discord. This is possible using
the minimal (maximal) teleportation fidelity when a qubit is teleported via a mixed state. It
turns out that the state which is hardest (easiest) to teleport changes at exactly the same
parameter values at which the transition between different discord decoherence regimes is
observed.

Ref. [E1] contains the answer to the question, when entanglement between a qubit and
its environment is formed under an evolution which leads to pure dephasing of the qubit.
Additionally, it was possible to show that for a large range of initial states of the environment,
it is possible to detect the entanglement by performing measurements on the environment
alone.
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Optical properties, quantum optical control and dephasing in semiconductor nanostruc-
tures
Institute of Physics, Wrocław University of Technology, 2010-2012
- Investigator

• Research Project 202/07.J051 (Bilateral Czech-German Grant)
Full counting statistics in non-markovian nano-systems
Department of Solid State Physics, Charles University in Prague, 2009-2010
- Investigator

• Research Grant N N202 1336 33
Ultraszybka kinetyka i nieliniowa odpowiedź optyczna niskowymiarowych struktur półprze-
wodnikowych: podwójnych kropek i studni kwantowych
Institute of Physics, Wrocław University of Technology, 2007-2009
- Investigator

5.8 Invited conference talks

1. K. Roszak, P. Machnikowski
Phonon induced decoherence of two-electron spin states in a double quantum dot
Nonequilibrium Nanostructures, International Workshop, Drezden, Germany (2008)

2. K. Roszak, P. Machnikowski, P. Horodecki, R. Horodecki
Entanglement measurement in dephased systems
Sympozjum KCIK, Sopot (2010)

3. K. Roszak, P. Mazurek, R. W. Chhajlany, and P. Horodecki
Magnetic field dependence of quantum dot spin qubit entanglement decay
EMN Fall, Orlando, USA (2013)

5.9 Other conference talks

• The 9th International School on Theoretical Physics: Symmetry and Structural Proper-
ties of Condensed Matter (Myczkowce 2005)

• “Jaszowiec” International School and Conference on the Physics of Semiconductors (Jas-
zowiec 2006)

• International Workshop on the Optical Properties of Nanostructures (Münster, Germany
2012)

• “Jaszowiec” International School and Conference on the Physics of Semiconductors (Wisła
2013)
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