WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

FACULTY OF

SUBJECT CARD

Course name in Polish

Course name in English

Course language

University-wide general course type:

1) basic course (mathematics, **physics**, chemistry, other)

- 2) humanity course
- 3) managerial skills

4) English language

5) other modern language

Departmental course developing professional skills:

- 1) specialized course
- 2) interdisciplinary course
- 3) seminar (interdisciplinary, specialized, departmental)

Type of course (obligatory, optional)

Educational effects according to ZW 26/2017: P8U_W, P8U_U, P8U_K Knowledge in Selected Aspects of Solid State Physics

Subject code

*delete as applicable

	Lecture	Laboratory	Seminar
Number of hours of organized classes in University (ZZU)	30		
Number of hours of total student workload (CNPS)	90		
Form of crediting	Examination **	Exam / crediting with grade*	Oral presentation
Number of ECTS points	3		
including number of ECTS points for practical (P) classes	2		
including number of ECTS points for direct teacher- student contact (BK) classes	1		

*delete as applicable **In case of didactic courses also inspections and evaluation classes

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge in quantum mechanics
- 2. This course program provides means to acquire skill in selected topics on Selected Aspects of Solid State Physics

SUBJECT OBJECTIVES			
C1	This course program provides knowledge in calculations of energy band structure		
C2	This course program provides knowledge in electrical phenomena in solid states		
C3	This course program provides knowledge in interactions of electrons and holes with		
	external magnetic and electric fields		
C4	This course program provides knowledge in low dimensional semiconductor structures		

WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:

PEK_W01 Student acquire knowledge in calculations of energy band structure

PEK_W02 Student acquire knowledge in electrical phenomena in solid states

PEK_W03 Student acquire knowledge in interactions of electrons and holes with external magnetic and electric fields

PEK_W04 Student acquire knowledge in low dimensional semiconductor structures

Relating to skills:

PEK_U01 Student acquire skills in calculations of energy band structure

PEK_U02 Student acquire skills in electrical phenomena in solid states.

PEK_U03 Student acquire skills in interactions of electrons and holes with external magnetic and electric fields

PEK_U04 Student acquire kskills in low dimensional semiconductor structures

Relating to social competences:

PEK_K01 Student acquire skills in interdisciplinary cooperation work PEK_K02 Student acquire skills in popular role of science in society ...

PROGRAM CONTENTS				
Form of classes – lecture Number				
Lec. 1,2	Methods of energy band calculations	4		
Lec. 3	Methods of calculations of electrons and holes densities in solid states	2		
Lec. 4	Boltzmann equation	2		
Lec. 5	Ohm law	2		
Lec.6.	Classical and Quantum Hall Effect	2		
Lec.7	Complex reflective index and conductivity	2		
Lec.8	Landau levels	2		
Lec. 9	Stark Effect	2		
Lec. 10, 11	Low dimensional semiconductor structures	4		
Lec. 12, 13	Optical studies of low dimensional semiconductor structures	4		
Lec. 14, 15	Graphen and transition metal dichalcogenides	4		
	Total hours	30		

TEACHING TOOLS USED				
N1	Form of the teaching: traditional + e-learning)			
N2	Student self-work			
N3	Consultations			

WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

EVALUATION OF ACHIEVED SUBJECT EDUCATIONAL EFFECTS				
Evaluation:	Educational effect	Way of evaluating achievement of educational		
F – forming (partial)	number	effects		
C – concluding				
F1	PEK_U01 - U04	Discussion		
F2	PEK_U01 – U44	Discussion		
C=F2				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- H. Ibach, H. Luth, Fizyka Ciała Stałego, Państwowe Wydawnictwo Naukowe. Warszawa 1996
- [2] N.W. Ashcroft, N.D. Mermin, Fizyka Ciała Stałego, Państwowe Wydawnictwo Naukowe, Warszawa 1986
- [3] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures. J. Willey, NY 1988
- [4] Articles in scientific jpurnals

SECONDARY LITERATURE:

- [1] P. Yu, M. Cardona, Fundamentals of Semiconductors, Springer, Berlin 1996
- [2] Yehuda B. Band, Light and Matter, Willey, West Sussex, 2006
- [3] John J. Quinn, Kyung Soo Yi, Solid State Physics: Principles And Modern Applications", Springer (2009)

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Leszek Bryja, prof. PWr, Leszek.Bryja@pwr.edu.pl