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Abstract

Over the last decade, two dimensional transition metal dichalcogenide crystals
revolutionized physics of semiconductors thinned down to atomic limit. Under-
standing their electronic structure and optical response is vital for advancement
of �eld towards practical devices and further discoveries of novel physical phe-
nomena.

In the �rst part of the following thesis minimal, graphene like tight-biding
model for MoS2 and related transition metal dichalcogenides is derived and
parametrized to reproduce low energy sector of ab initio electronic properties.
In next step, e�ects of band nesting and related existence of additional valleys
beyond those in K points is discussed. Di�erent contributions to response to
magnetic �eld are then analyzed, including valley Landé and Zeeman e�ects.

In second part, optical response of correlated electron-hole pairs is derived in
con�guration-interaction language, leading to analog of Bethe-Salpeter equa-
tion. The electron-hole direct and exchange interaction and microscopic elec-
tron and hole energies are computed using the tight-binding model. The exciton
spectrum, including ground state, excited states, topology, K- and Q- valleys
and screening are analyzed. Then, for speci�c case of MoS2, �ne structure of
exciton spectrum is discussed quantitatively and it's implications on charged
exciton �ne structure are then discussed qualitatively.

In third part of the thesis, gate-de�ned quantum dots are studied. Multi-valley
origin of states is �rst uncovered. Then special attention is paid to topology-
related modi�cation of Fock-Darwin states ladder resulting from parabolic con-
�nement. Next, existence of SU(3) symmetric "quark" states resulting from
additional valleys in conduction band is discussed. Finally, interplay of spin,
valley and con�nement on ordering of states inside quantum dots is presented.
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Streszczenie

W ostatniej dekadzie dwuwymiarowe krysztaªy z rodziny dichalkogenków me-
tali przej±ciowych zrewolucjonizowaªy �zyk¦ póªprzewodników o grubo±ci rz¦du
kilku atomów. Zrozumienie ich wªa±ciwo±ci elektronowych i optycznych jest pod-
staw¡ dalszego rozwoju w dziedzinie zarówno praktycznych urz¡dze«, jak i od-
krywania nowych efektów �zycznych.

W pierwszej cz¦±ci niniejszej rozprawy przedstawiony zostanie minimalny, gra-
feno - podobny model ciasnego wi¡zania póªprzewodnika MoS2, b¦d¡cego przed-
stawicielem szerszej rodziny zwi¡zków MX2 (M=Mo, W, X = S, Se, Te). Na-
st¦pnie opisana zostanie parametryzacja modelu oddaj¡ca jak najlepiej nisko-
energetyczn¡ struktur¦ elektronow¡ obliczon¡ metodami ab initio. W nast¦pnym
kroku przedyskutowane zostan¡ efekty zwi¡zane z równolegªo±ci¡ pasm walen-
cyjnego i przewodnictwa, powi¡zane z tym istnienie dolin w ró»nych cz¦±ciach
strefy Brillouina oraz odpowied¹ elektronów na zewn¦trzne pole magnetyczne.

W drugiej cz¦±ci pracy przedstawiona zostanie odpowied¹ optyczna skorelowa-
nych par elektron-dziura, wyprowadzona za pomoc¡ metody oddziaªywania kon-
�guracji, prowadz¡ca do równania analogicznego do równania Bethe-Salpetera
znanego z teorii pola. Równanie to zostanie nast¦pnie rozwi¡zane przy u»yciu
stworzonego w pierwszej cz¦±ci modelu ciasnego wi¡zania. Nast¦pnie przedysku-
towane zostan¡ szczegóªy struktury subtelnej ekscytonu w MoS2 oraz jej wpªyw
na mo»liwe stany naªadowanych ekscytonów.

W trzeciej cz¦±ci pracy opisane zostan¡ badania kropek kwantowych, de�nio-
wanych za pomoc¡ metalicznych bramek nakªadanych na dwuwymiarowe póª-
przewodniki. Gªówny nacisk poªo»ony zostanie na identy�kacj¦ wielodolinowej
natury stanów zlokalizowanych w kropce. Nast¦pnie przedyskutowane zostan¡
efekty topologiczne mody�kuj¡ce drabink¦ stanów dwuwymiarowego oscylatora
harmonicznego. W dalszym kroku przeanalizowane zostanie istnienie tzw. sta-
nów kwarkowych speªniaj¡cych symetri¦ SU(3), wynikaj¡cych z istnienia dodat-
kowych dolin w pasmie przewodnictwa. Rozdziaª zako«czony zostanie dyskusj¡
mo»liwych hierarchii spinowo- i dolinowo- rozszczepionych stanów w kropkach
o ró»neym promieniu.
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Purpose, Original Contribution and Plan of the

Thesis

PurposeIn the following thesis I present results of theoretical investigation of electronic
structure and optical properties of two dimensional transition metal dichalco-
genide crystals. Broadly speaking, there are 3 major purposes of this work:
building simplest possible, yet still correct, theory of electronic structure of 2D
crystals and then applying this theory to understand physics of excitons and
states con�ned inside gate-de�ned quantum dots.

More speci�cally, �rst purpose is to build ab initio based tight-binding model
that will be minimal in number of orbitals and applicable to multi-million atom
nanostructures. To do this it is necessary to understand �rst principles calcula-
tions in terms of orbitals contributing to bands around Fermi level. Next aim is
to construct p3d3 orbital tight-binding model and parametrize it to reproduce
ab initio electronic structure. Then we want to understand better how good
such parametrization can be performed in terms of range of hopping on the
lattice. Next goal is to understand how single-particle model can be useful in
description of response of carriers to external magnetic �elds.

Second purpose of the following thesis is to understand �ne structure of excitonic
response of TMD's. First objective is to build theory of exciton beyond one used
usually in ab initio calculations, that in the future could be extended to describe
all experimentally relevant excitations in TMD's, for example trions, biexcitons
and charged biexcitons. Then such theory must be properly "discretized" to
enable solving it on a computer with precision high enough to be able to obtain
converged results. Next goal is to test if previously constructed tight-binding
model is su�cient to understand experimental results.

Third objective of this work is to check how multi-valley structure and topo-
logical e�ects a�ect seemingly simple and well understood problem of carrier
con�nement in two dimensions by parabolic potential well, which is low energy
approximation of realistic con�nement induced by metallic gates. Purpose of
this part of project is to understand spin- and valley- structure of states inside
electrostatically de�ned quantum dots. Then, role of additional valleys in con-
duction band, resulting in quantized states possessing fascinating �avor SU(3)
symmetry known from quark physics will be studied, especially from the point
of view how many electrons are necessary inside quantum dot to probe physics
of those states.

Original ContributionMy work described in Chapters 2 to 4 is scattered through several publications
written in collaboration with many people. Main papers on thesis topic, in
chronological order, are listed below:

1. M. Bieniek, M. Korkusi«ski, L. Szulakowska, P. Potasz, I. Oz�dan, and
P. Hawrylak, "Band nesting, massive Dirac fermions, and valley Landé
and Zeeman e�ects in transition metal dichalcogenides: A tight-binding
model", Phys. Rev. B 97, 085153 (2018).1

2. J. Jadczak, L. Bryja, J. Kutrowska-Girzycka, P. Kapu±ci«ski, M. Bie-
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niek, Y.-S. Huang and P. Hawrylak, "Room temperature multi-phonon
upconversion photoluminescence in monolayer semiconductor WS2", Na-
ture Communications 10, 107 (2019)2

3. L. Szulakowska, M. Bieniek, P. Hawrylak, "Electronic structure, magne-
toexcitons and valley polarized electron gas in 2D crystals", Solid State
Electronics 155, 105 (2019)3

4. M. Bieniek, L. Szulakowska, and P. Hawrylak, "E�ect of valley, spin, and
band nesting on the electronic properties of gated quantum dots in a
single layer of transition metal dichalcogenides", Phys. Rev. B 101, 035401
(2020)4

5. M. Bieniek, L. Szulakowska, and P. Hawrylak, "Band nesting and exciton
spectrum in monolayer MoS2", Phys. Rev. B 101, 125423 (2020)5

6. J. Jadczak, J. Kutrowska-Girzycka, M. Bieniek, T. Kazimierczuk, P. Kos-
sacki, K. Watanabe, T. Taniguchi, C.-H. Ho, A. Wójs, P Hawrylak, and
L. Bryja, "Fine structure of charged and neutral excitons in monolayer
MoS2", arXiv:2001.07929 (2020)6

7. L. Szulakowska, M. Cygorek, M. Bieniek, P. Hawrylak, "Valley and spin
polarized broken symmetry states of interacting electrons in gated MoS2

quantum dots", arXiv:2005.04467 (2020)7

I took part in discussing, testing and analyzing di�erent theoretical and experi-
mental aspects presented in those works. I also took part in writing, formatting
and preparing �gures of publications 1, 4, 5, 6 and I contributed to discussions
and proofreading of all mentioned manuscripts. Due to highly collaborative na-
ture of those works I would like to list aspects that I was directly responsible
for. Tasks accomplished independently were:

• Re-derivation, parametrization and coding of p3d3 tight-binding model
derived originally by prof. Marek Korkusi«ski and detailed study of orbital
couplings and band nesting e�ect within it

• Derivation of Landé g-factors

• Derivation and numerical solution of Bethe-Salpeter-like equation for ex-
citon using before-mentioned tight-binding model

• Detailed analysis of �ne structure of valley excitons in MoS2 and trends in
other MX2 materials (spin splitting, e�ective masses, polarizability), e.g.
helping to understand di�erences in their excitonic properties

• Implementation of model of gate-de�ned quantum dot and single particle
analysis of Fock-Darwin spectrum of K- and Q- valley derived states of
gate-de�ned quantum dots in MoS2

• Qualitative theoretical analysis of trion species in materials with small
spin splitting in conduction band
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I would like also to point to four papers that are not directly described in
this thesis, however, they are related to topological properties of atomically
thin crystals with signi�cant spin-orbit coupling leading to their transition to
topological insulator (quantum spin Hall insulator) state:

• M. Bieniek, T. Wo¹niak, P. Potasz, "Study of Spin-Orbit Coupling E�ect
on Bismuth (111) Bilayer", Acta Physica Polonica A 130, 609 (2016)

• M. Bieniek, T. Wo¹niak, P. Potasz, "Stability of topological properties of
bismuth (111) bilayer", J. Phys.: Condens. Matter 29, 155501 (2017)

• M. Brzezi«ska, M. Bieniek, T. Wo¹niak, P. Potasz and A. Wójs, "Entan-
glement entropy and entanglement spectrum of Bi1−xSbx (111) bilayers",
J. Phys.: Condens. Matter 30, 125501 (2018).

• N. Nouri, M. Bieniek, M. Brzezi«ska, M. Modarresi� S. Zia-Borujeni, Gh.
Rashedi, A. Wójs, P. Potasz, "Topological phases in Bi/Sb planar and
buckled honeycomb monolayers", Physics Letters A 382, 2952 (2018)

Even though MoS2 is topologically trivial, work leading to those four publi-
cations greatly improved my understanding of topological aspects of two di-
mensional semiconductors and quantum transport. Those papers are not de-
scribed due to di�erent material class studied in them and di�erent methodology,
namely Green's function- based methods for calculations of transport proper-
ties. To sum up, I hope those advances are su�ciently original and important
in area of two dimensional semiconductors.

PlanThe following thesis is divided to introduction summarizing available litera-
ture and three large Chapters summarizing my original contribution. First I
will describe current status of knowledge on both theoretical and experimental
aspects of physics of two dimensional crystals. I will focus on semiconducting
transition metal dichalcogenides and in principle largely omit enormous amount
of works on graphene mono- and bi-layers and other two-dimensional crystals
not included in transition metal dichalcogenide MX2 (M=Mo,W, X=S, Se, Te)
family. Even with this omissions number of works cited is large and re�ects
worldwide interest in atomically thin materials.

In the next part I describe electronic properties of molybdenum disulphide,
focusing on construction of graphene-like tight-binding model capturing most
important aspects of electronic structure close to the Fermi level. Then detailed
analysis of origin of the band-gap within d-orbitals is discussed, along with ex-
planation of process leading to additional secondary minima in conduction band
at Q points. Chapter is �nished with discussion of Landé and valley Zeeman re-
sponse of MoS2 (and more broadly MX2 materials family) to external magnetic
�eld.

In third chapter optical response de�ned by correlated electron-hole complexes,
i.e. excitons, is described. First, I derive equation governing such correlated ex-
citonic state following con�guration-interaction methodology. Then I describe in
details how this equation can be discretized and solved numerically using tight-
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binding model derived in second Chapter of this thesis. Next I compare numer-
ical approach with exact theoretical results and I asses issues related to conver-
gence of such calculations. Then, by improving successively models of electron
dispersion, wavefunctions and screening I show how MoS2 excitonic spectrum
evolves from simple "two-dimensional hydrogenic" exciton to rich spectrum that
depends on topological properties of wavefunctions describing electron and hole
components. I conclude with discussion on how this understanding helps to
identify charged exciton �ne structure.

In the last chapter of this thesis I describe single-particle properties of gate-
de�ned quantum dots, modeled as parabolic potential con�ning electrons in
conduction band. First, computational box with periodic boundary conditions
avoiding problem with edge states is discussed. Then, con�nement in such
box is introduced. Modi�cations of Fock-Darwin spectrum of two-dimensional
parabolic potential by existence of 2 K-valleys and additional 3-secondary Q-
point "satellite" valleys are discussed. SU(3) symmetric nature of states from
secondary minima in conduction band is elucidated. Then role of geometric �eld
(Berry's curvature) on states with non-zero angular momentum is analyzed. In
next step role of spin splitting between di�erent MX2 materials is discussed and
possible experimental consequences on shell �lling scheme are analyzed.
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Chapter 1

Introduction

In the following chapter historical account of di�erent physical phenomena re-
lated to reduced dimensionality, high energy physics and topology are described.
Then, extensive review of experimental properties of transition metal dichalco-
genides follows. Theoretical investigations into electronic and optical features of
those crystals are then summarized. In the last part short summary of emerging
�eld of quantum dots de�ned in 2D crystals is presented.

1.1 Overview of physics of low dimensional elec-

tron gas

First material platformsPhysics of two dimensional (2D) and quasi-2D electron systems is a large �eld
of condensed matter physics, which �ourished around 1970, after developing
molecular beam epitaxy technique.8 Electron systems that are "dynamically
2D9" means simply, that carriers are free to move in two dimensions and motion
is quantized in the third one, situation that occurs e.g. in quantum well systems,
on the surfaces/interfaces of crystals or on top of the liquid helium. One of the
best quality samples exhibiting this physics were �rst obtained in GaAs/AlGaAs
quantum well heterostructures, in which groundbreaking transport10 and optical
e�ects were observed.11 Soon after, large new �elds of low-dimensional physics
were opened, e.g. physics of quantum wires12 and quantum dots.13�15

Early theoretical
approaches

First approaches to simulating electronic properties of nanostructures were based
on free electron model (see16 and reference therein), which assumed parabolic
energy dispersion of carriers. Simultaneously, envelope function approximation
was used. Later, k ·p methods were extended, allowing to discuss more precisely
e�ects of strain and band mixing e�ects.17 For small systems, usually quantum
dots and thin nanowires, it was possible to use tight-binding18 and empirical
pseudopotential19�21 methods. Because application of ab initio techniques22 was
possible only for small systems, mixed techniques were developed, e.g. ab initio

based tight-binding23�25 and maximally localized Wannier orbital26 approaches.
Basis of electron wavefunctions is reduced in them and model parameters are
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�tted to reproduce as good as possible bulk band structures. Then, theory is
applied to nanostructures. All those approaches used single electron approxi-
mation, which provides in many cases reasonably good description of con�ned
electrons.

Relativistic theory Importance of Dirac equation for description of atoms and crystalline materials
was understood from the very beginning of quantum mechanics,27 especially
due to importance of spin and spin-orbit coupling in atomic physics. This cou-
pling, along with many other relativistic corrections, is crucial to understand
how atoms behave when brought together to form crystalline material. On the
other hand, notion of 2D relativistic physics applied to quasiparticles begun
much later, with realization that there are physical systems described by low
energy (2+1) relativistic gauge theories.28�31 Later, massive Dirac fermion de-
scription of several materials have been proposed, e.g. for graphene on hBN32,33

or MoS2.34 Low energy models corresponding to physics of Weyl35 and Majorana
fermions36,37 have also been proposed. Currently, more and more materials with
low-energy degrees of freedom described by theories beyond Standard Model are
being proposed,38 including type-II Weyl, hourglass and many other fermions,39

some of them postulated in 2D materials.40,41

Topology of 2DEG in
high B

Topological aspects of physics in 2D electron gas systems were �rst understood
for non - relativistic and non-interacting electron gas systems in high magnetic
�elds. The most famous example is an integer quantum Hall e�ect (IQHE), dis-
covered experimentally in 1980.42 It was understood quickly that conductance
in IQHE is related to topological invariant called Chern number.43 Soon after,
interacting counterpart of IQHE was discovered and dubbed fractional quan-
tum Hall e�ect (FQHE).44,45 This phenomenon was understood as IQHE of
novel quasiparticles, called composite fermions.46,47 Physics behind those con-
cepts challenged Landau-Ginzburg classi�cation of phases, leading to the idea
of topological order of gapped phases of matter, breaking into two large classes
of short- and long-range entangled electronic phases.48,49

Novel topological
phenomena

In 1988 Haldane realized50 that electron motion, similar to such as in quantum
Hall e�ect, can be realized without magnetic �eld.51 This idea led in 2005 to
discovery52 of novel type of semiconductor, called quantum spin Hall insulator
(QSHE), later called also 2D topological insulator. Original proposal53 to ob-
serve this e�ect in pristine graphene failed, due to vanishingly small SOC due
to light carbon nucleus, however nowadays there are several known routes54,55

to enhance SOC enough to observe this e�ect. In parallel, many other materi-
als were predicted to and proved experimentally to exhibit QSHE.56�61 Topo-
logical classi�cation quickly burst into 3D systems, uncovering novel way to
classify band structures of crystalline materials,62�66 including both semi- and
super-conductors. Rich physics related to electron-electron interactions,67 mag-
netism68,69 and interplay with crystalline symmetries70�72 is still being vigor-
ously studied.

Berry's curvature Unifying concept in �eld of topology in crystals is Berry's curvature (geomet-
ric curvature) of the bands in the Brillouin zone.73�75 Topologically, electron's
Bloch wavefunctions on BZ torus are understood in terms of �ber bundles the-
ory,76 therefore properties of those wavefunctions de�ne topological properties of
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electron behavior. Interesting, even though in topology one usually talks about
single invariants, e.g. Chern or Z2 numbers, Berry's curvature is a k-space de-
pendent quantity and can in�uence di�erently observables "feeling" di�erent
parts of reciprocal space, e.g. excitons localized in di�erent parts of Brillouin
zone.

Concepts of valley and
pseudospin

The idea of valley was introduced in physics of silicon and germanium.16 Later it
become important for understanding graphene, which hexagonal structure im-
plies hexagonal BZ with two non-equivalent valleys at it's corners. Valley index
can be understood as a novel degree of freedom.77�79 This quantity, just as elec-
tron's spin, can be controlled by various means, allowing for de�nition of valley
qubit.80 However, in graphene even for single valley one writes e�ective Dirac
Hamiltonian, therefore one may wonder in what basis spinor in one valley is
de�ned. The answer here is so-called sublattice pseudospin, which distinguishes
between spinor wavefunction localized on two non-equivalent atoms in graphene
unit cell.81 Pseudospin may result from many other sources,82 e.g. orbitals,70

spin-orbit coupled orbitals,56 energy bands83,84 or Nambu pseudospin,63 as well
as be an emergent quantity.85,86

1.2 Renewed interest in atomically thin 2D crys-

tals

Historical accountFact that many crystals have layered form with strong intra-layer and weak
inter-layer bonds was well-known for decades.87�89 In 1962 it was con�rmed,
that single layer of graphite, called "graphene" later, can be thermodynamically
stable. In 1970's many groups studied properties of few-lawyer graphite down to
single layers, especially in relation to modi�cation of properties of anisotropic
crystals via intercalation.90,91

Mechanical exfoliation
and transport

More widespread interest in graphene begun around 2005, mostly due to re-
alization that high-quality few-layer crystals can be obtained via mechanical
exfoliation29 process, in which layers are peeled o� using scotch tape and then
are identi�ed using optical microscope. Second important aspect was that ad-
vances in electron-beam lithography allowed for contacting those samples using
gold electrodes and performing transport experiments.30,31 Immediately it was
realized that many other materials can be obtained using this technique,92 i.e.
isolators, semiconductors, metals and superconductors.

Zoo of 2D crystalsSince initial discovery that graphite, hexagonal boron nitride (hBN), many tran-
sition metal dichalcogenides (e.g. MoS2) and "high-Tc oxides" (e.g. Bi2212) can
be exfoliated, natural question arose how many 2D crystals exist in nature.
Large scale data mining approaches, combined with high-throughput ab initio

calculations established that from about 105 experimentally known crystals ap-
proximately 1800 should be exfoliable and thermodynamically stable.93 They
include 5 mono-atomic crystals occurring naturally in layered form (build from
atoms C, P, As, Sb, Bi). Additionally, e�ort has been made to grow others (Si,
Ge, Te, B)94 synthetically. About 20% of them has chemical formula AB2,95
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and around 40 of them belong to family called transition metal dichalcogenides
(TMD's). In this family, contrary to graphene, single layer is build from three
planes of atoms: two of them build out of chalcogen X, surrounding symmet-
rically metal M plane (X-M-X structure). Usually, they have trigonal (1T),
hexagonal (2H) or rhombohedral (3R) polymorphic structure.96 Around half of
them in bulk form is metallic, and other half is semiconducting.97 All semicon-
ducting materials from this family share common theme, that when thinned
down from bulk to monolayer, the electronic band gap increases. In some cases,
i.e. VS2 or (W/Ti/Zr/Hf)Te2, transition from metal to semiconductor is also
predicted. Semiconducting TMD's that sparked largest attention due to promis-
ing optoelectronic properties98 were compounds with formulas MoS2, MoSe2,
MoTe2, WS2 and WSe2. Interestingly, WTe2 in 2H phase is predicted to be
metastable and 1T phase is energetically more favorable, in which WTe2 is
rather semimetallic than semiconducting, possibly exhibiting topologically non-
trivial characteristics.99,100

CVD/MBE growth Even though monolayer TMD's samples obtained using mechanical exfoliation
have excellent quality, for both transport101 and optical studies,102,103 scal-
able technology requires molecular beam epitaxy or chemical vapor deposition
growth, the former having better quality with higher cost than the latter. In-
terestingly, even though �rst grown MoSe2 �lms on bilayer graphene / highly
oriented pyrolytic graphene on SiC substrate shown good optical quality,104 they
were still inferior to the exfoliated samples. Since then, many advances has been
made.105�107 For example, MoS2 has been grown on many di�erent substrates,
including SiO2,108 hBN109,110 or even highly mismatched in lattice constant
graphene.111 Despite that, exfoliated samples are still being used for optical
studies requiring ultra-sharp transition lines.112 Alternatively to those methods
liquid phase exfoliation is possible as an cost-e�ective method, and was achieved
for many TMD's113 and nowadays is well understood e.g. for MoS2 crystals.114

Role of substrate Properties of monolayer crystals depend not only on their chemical composition
and structural phase, but also on choice of the substrate on which they lie on.
When �rst samples of TMD's were obtained, standard procedure after their
exfoliation was to put them on properly prepared SiO2 / Si substrate, which
for certain thickness of SiO2 layer enhanced contrast in optical microscopy.115

It was also understood that optical quality depends heavily on surrounding
dielectric environment,116,117 which brought into question if SiO2 is truly best
substrate for optical studies. Nowadays it is clear that substrate on which subtle
optical features of TMD's can be most easily observed is hBN,118,119 for which
e.g. exciton lines approach 2 meV widths.

1.3 Review of experimental properties of TMD's

Experimental techniques
for TMD's

Optical and electrical measurements of crystals are primary tools in their stud-
ies.120�122 Despite being well developed, even for nanostructures like quantum
wells, atomically thin samples pose many challenges in performing "standard"
experiments. Additionally, by mechanical exfoliation highly non-uniform sam-
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ples are produced, resulting in spread of experimental results. Those depend also
on history of the sample, e.g. oxidation.123 Transport experiments are especially
di�cult due to limited possibility of attaching low resistance contacts, however
many advances been made.124 In general, standard procedure after deposing
sample on a substrate is checking how many layers crystal actually has at a given
position. To do that, optical contrast has been invaluable to quickly establish
thickness of samples, which can be further con�rmed by atomic force microscopy
measurements103 or Raman spectroscopy.125,126 It is known also that, mostly
due to strain, TMD's do not have homogenous band gaps, as shown by scanning
tunneling microscopy experiments.127,128 It should be therefore understood that
optical methods, probing sample over some �nite area, give rather averaged re-
sults. For bands �lled with electrons it is possible to use high-energy photons
to excite carriers so much that they leave the sample, and then can be detected
keeping their angular information, re�ecting their reciprocal space positions in
the Brillouin zone, technique that is know as angle-resolved photoemission spec-
troscopy. This method was used to measure e�ective masses and band splittings
of valence bands of TMD's,129�135 however it requires metallic substrate that
signi�cantly screens interactions predicted in monolayers without substrate.

Optical probingIn order to study more subtle properties of TMD's, e.g. related to optical energy
gap or dispersion of empty bands, absorption, re�ection (RC) and photolumi-
nescence (PL) experiments are preferred. In absorption usual problem is that
for thin samples amount of absorbed light is small. Despite monolayer thick-
ness, absorbance in TMD's for speci�c photon energies is exceptionally high
(compared to 2.3 % in graphene),136 promising novel solar cells and photode-
tectors with parameters already surpassing best Si and GaAs devices.137�142 As
for optical studies of quantum wells, one can study also re�ection of light from
the sample or excite carriers with photons with some energy and collects signal
that is emitted back, which is essence of photoluminescence e�ect. Performing
re�ection and PL experiments at exactly the same spot and time is usually
challenging, however it is possible.2,143 Also, to study dynamical properties of
samples, Raman e�ect measurements are routinely performed, which detect sig-
nal from vibrational degrees of freedom of the monolayers, e.g. di�erent types
of phonons helping to distinguish between samples with di�erent numbers of
layers.144,145

Giant PL enhancementOne of the results that sparked widespread attention around 2010 was establish-
ing that MoS2, when thinned down to a single monolayer, exhibits signi�cantly
stronger photoluminescence than two and more layer crystals.103,146,147 Similar
trend was then con�rmed in MoSe2,148 WS2,149 WSe2

148,149 and MoTe2
150,151

semiconductors with varying magnitude of di�erences between samples with dif-
ferent number of layers. This phenomenon was related to indirect - direct band
gap transition, caused by di�erent renormalization of indirect (Γ-Q) band gap
compared to much smaller renormalization of K-K direct gap when samples
are thinned down. This trend was con�rmed theoretically by ab initio calcu-
lations152,153 and con�rmed experimentally by photoemission spectroscopy for
valence bands (valence band maximum change from Γ to K point between few
and one monolayer).129
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Valley excitons �ne
structure

First inkling that strong photoluminescence is dominated by excitonic (X) tran-
sition comes from comparison of PL peak energy position to known spectral
positions of excitonic transitions in bulk MoS2 at K point.146,154 Two excitonic
transitions, dubbed A and B, separated spectrally by approximately 140 meV in
MoS2 correspond to two bound states of electron-hole pairs with opposite spins
arrangement, and their splitting re�ects spin-orbit splitting of valence bands.
Importantly, generation of excitons in a given valley is possible via specif se-
lection rules, which couple circularly polarized light with excitation in a given
valley (e.g. σ+ generates excitons in +K valley).34,155�161 Valley coherence of
such excitons has been probed in many experiments.162�166 Spontaneous choice
of valley after excitation with unpolarized light has also been observed,167 point-
ing towards valley-polarized ground state.168�170 Excited exciton states were
measured in WSe2,171,172 WS2

173 prior to molybdenum based TMD's due to
larger separation between A and B excitons ( 0.4 eV), so that B exciton was not
"masking" excited A exciton states. Alternative proposal, with 1s A, 1s B and
then excited A series was also discussed.174 Then, complementary PL excita-
tion spectroscopy allowed to measure excited states in MoS2, MoSe2, WS2 and
WSe2.175�177 Excited B exciton series is more challenging to measure172,176 due
to overlap with wide PL signal from so-called C excitons, resulting from band
nesting (parallel valence and conduction bands) around Q and Γ points of the
BZ. All of those experiments con�rmed that spectrum of s-like states deviates
strongly from 2D hydrogen-like series. Further experiments in magnetic �elds
reached up to 5s excited states.112,178�181 We note that exciton series consists
not only of bright s-series, but also two types of so-called dark states, namely
spin-forbidden and excited excitons states with di�erent than s symmetry. The
former one can be probed by PL dynamics,182,183 di�erent emission con�gura-
tions,184�189 di�erent temperature dependence of emission190 or by using tilted
magnetic �eld.185,191�194 The latter ones are usually probed using two photon
spectroscopy.195,196 Dark p-states can be also studied in pump-probe experi-
ments,197�203 where 1s excitons are generated and transition from 1s to 2p states
can be measured by a probe terahertz beam.204 Additionally, excitons with �-
nite center-of-mass momentum, which require phonon-assisted excitation due to
momentum conservation can also be probed, revealing complicated landscape
of so-called momentum-indirect excitons.205�208

Trions In addition to strongly bound excitons, TMD's exhibit another type of bound
complex in their photoresponse, namely trion.209�212 This complexes consists
of 3 particles, i.e, 2 electrons + 1 hole (X−) or 2 holes + 1 electron (X+) for
negatively and positively charged types, respectively. In GaAs quantum wells
rule of thumb is that trion binding energy is order of magnitude smaller than for
exciton, and same rule seems to work in TMD, in which, however, binding en-
ergy of exciton is in order of hundreds of meV, therefore trion binding energy is
given in tens of meV.143,213�221 Existence of such complexes depends heavily on
excess carriers, which come from natural defect-induced,222 chemical,116,223 sub-
strate216,224,225 or gate doping.162,226�232 Stability of those complexes has been
shown to survive up to room temperatures.143,213 For higher doping regimes,
picture of exciton interacting with FErmi sea has been proposed.169,233 Interest-
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ingly, just as in exciton case, trions exhibit �ne structure,231,232,234�239 involv-
ing both dark-bright states and also excited trion states.240 Moreover, strong
electron-phonon interaction allows to couple trions and excitons, allowing for
example so-called up-conversion process,241 in which low energy photon excita-
tion (exciting trion) via phonon coupling induces optical emission from higher
energy state (exciton).

Large excitonic moleculesDue to exceptionally strong electron-electron interaction, manifesting itself in
large binding energy of excitons and trions, it is natural to ask if optical com-
plexes composed of more than 3 particles are possible. 2 electron + 2 hole
bound state is called biexciton (XX). Several experimental �ngerprints of those
complexes have been detected.228,234,242�246 Magnetic �eld measurements247 re-
vealed biexciton g-factors similar to excitonic ones. Biexcitonic thermolumines-
cence was proposed to dominate optical response of edge and grain boundaries
for high excitation regime.248 Stability of these complexes in room temperature
has also been demonstrated.249,250 Studies of tunability of XX with electrostatic
gating251�254 shed some light on relative positions of exciton - trion - biexciton
lines, suggesting that biexciton lines are located between trion and exciton, and
below trion line charged biexciton255 (electron + trion bound complex) can be
observed.

Other collective
excitations

Interpretation of di�erent lines in PL/ absorption spectrum is generally di�cult,
not only due to plethora of di�erent optical complexes, but also due to possi-
bility of coupling of those complexes to di�erent quasiparticles, e.g. related to
excess charge carriers.211 For example, some of the lines interpreted as charged
excitons / biexcitons, are also consistent with interpretation that exciton couples
to plasmons, i.e. collective excitations of electron gas.256,257 Coupling of exci-
tons to so-called polarons258 (polarization cloud) has also been used to explain
e�ects of oscillator strength transfer between some features of PL spectrum in
MoS2.169 Novel mechanism of phonon - exciton interaction crating virtual trions
has also been put forward.259 Strong coupling to light in microcavities creating
polaritons260 has also been demonstrated.261,262

van der Waals
heterostructures

Atomically thin crystals o�er novel route to engineer material properties due
to possibility of assembling them into di�erent con�gurations.263 Starting from
proof-of-concept double layers of graphene with hBN layers between them,264

subsequently it has been shown that graphene can act as atomically sharp con-
tact to TMD's.265 Recently, one of the greatest improvement of optical quality
of semiconducting crystals was achieved by placing them in-between thin hBN
crystals.119,266 Di�erent band gaps and band-edge positions allowed for creating
analogues of type I and type II heterostructures.267,268 Inter-layer excitons has
been observed,268�274 showing both PL and exciton energy electrical tunability
and order of magnitude longer lifetimes than intra-layer exciton due to spatial
separation of electron and hole.269,275,276 Moreover, larger complexes with car-
riers residing in di�erent layers has already been proposed and some evidence
of such behaviour has been found.277�280 Long inter-layer exciton lifetime natu-
rally led to the proposal of exciton Bose condensates,281,282 which �rst evidence
of experimental realization emerged in MoSe2-WSe2 system.283

StraintronicsAnother route to engineer material properties comes from strain engineering.
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Atomic force microscope mechanical studies of MoS2 has shown that samples
can sustain large strain, between 6 and 11%284 (13% for graphene) of lattice con-
stant. Continuous tuning of optical band gap,285 with changes reaching up to 400
meV for strains up to 3%128 has been shown, along with direct to indirect band
gap transition in MoS2, occurring slightly above 1% of applied strain.286 Op-
tical strain mapping in TMD's has been demonstrated using Raman,287 PL288

and second harmonic generation289 techniques. Interestingly, strained regions
were shown to attract excitons and trions, enhancing exciton-to-trion conver-
sion.290 Strain can also induce con�nement of carriers,288 and can be used to
deterministically arrange arrays of quantum dot-like emitters.291,292 It is worth
mentioning, that strain naturally occurs also inside so-called bubbles, which are
ubiquitous in realistic atomically thin materials samples.293

Twistronics Another alternative method to tune electronic properties, unique to 2D crys-
tals, is related to modi�cation of relative twist angle between two or more
crystals or between crystal and the substrate. Starting from various studies
of twisted graphene layers,294�304 it was quickly realized that graphene on hBN
substrate33,86,305�312 exhibits so-called moiré pattern, opening unique avenue
of superlattice engineering to study novel physical phenomena.313�317 Tuning of
electronic properties with respect to twisting for other crystals, e. g. two MoS2

monolayers,318�322 was also demonstrated. Additionally, novel type of exciton
tuned by inter-layer twist was established.323�327 Fascinating new line of research
was opened by discovery of superconductivity in twisted bilayer graphene,328�330

with potential of studying Hubbard physics in twisted TMD's platform already
emerging in literature331,332

Superconductivity in
TMD's

It has been long-known that metallic TMD's MX2 (M=V, Nb, Ta, X=S, Se, Te)
and RhTe2 are superconducting,89 with largest superconducting transition tem-
perature in NbSe2 at 7 K. Answer to question if superconducting state survives
when crystals are thinned down to monolayer is positive. In metallic monolayers
superconducting state was discovered for TaS2

333 and NbSe2.334 Even though
MoS2 in bulk form is semiconductor with band gap approximately 1.0 eV, it has
been shown experimentally that combination of liquid environment and crystal
doping can induce superconducting state in thin �lms335 with transition tem-
perature up to 10.8 K. Interestingly, superconducting state in MoS2 can survive
very high magnetic �elds (up to 52 T at 1.5 K336) due to novel mechanism of
protection of Cooper pairs against magnetic breakdown due to speci�c spin-
valley structure of electron pockets ( establishing so -called class of "Ising - su-
perconductors").337 Gate-tunable superconductivity in 2H-MoS2 monolayer,338

2H- WS2 monolayer339 and 2H MoS2 bilayer340 samples has also been demon-
strated. Experiments show,338 that the explanation of pairing mechanism in
MoS2 has to go beyond conventional phonon-driven BCS s-like state,341 with
many proposals including topological nature of pairing.342�346 Multi-valley na-
ture component of superconducting state, associated with existence of Q points
in which both spin orbit and electron - phonon couplings152,347,348 are enhanced
with respect to K valleys, has also been discussed experimentally.349,350 Inter-
estingly, recent experiments show also that monolayer 1T'-WTe2 topological
insulator exhibits superconductivity with transition temperature around 1K,351
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which can be enhanced by creating heterostructures with few-layer NbSe2.352

1.4 Electronic structure of MX2 semiconductors

Ab initio studiesEarly ab initio calculations of MX2 crystals353�360 were motivated by many
STM experiments of surfaces aimed at understanding structural properties of
transition metal dichalcogenides.361�364 Those studies con�rmed long-known89

fact that MX2 crystals (then mainly TaS2, TaSe2, MoS2, WS2) have layered
structure, with strong bonding inside "sandwich" of three layers of chalcogen-
metal-chalcogen and weak van der Waals bonding between "sandwiches", which
are nowadays called "monolayers". Plane wave calculations utilizing Vanderbilt's
ultra-soft pseudopotentials365 have shown di�erences between bulk and mono-
layer band structures.355 Then many studies on, e.g., vacancies on surfaces,366

fullerene-like structures,367 nanotubes,368,369 nanoclusters370�372 and nanorib-
bons373,374 appeared. Several pseudopotential calculations con�rmed transition
to direct electronic bandgap,146,372,375 fact that was further veri�ed by all-
electron calculation.152 Systematic study of TMD's family MX2 (M=Mo, W, Nb,
Ta, X= S, Se, Te) showed that Mo and W compounds are semiconducting while
Nb and Ta are metallic.376 Moreover, study of various approximate solutions
to DFT band gap problem (Heyd-Scuseria-Ernzerhof (HSE) hybrid exchange -
correlation functional,377 GW correction378), showing large spread of estimated
band gap, con�rmed trend that bang gap lowers when changing from sul�des to
selenides to tellurides.376,379 Quasi-particle self-consistent GW method380�385

calculations con�rmed large increase of single-particle band-gap compared to
LDA or GGA results.386�389 Summary of many available LDA GGA, HSE, GW
and experimental single particle properties are presented in Ref. 390. Further
improvements over GW method including vertex corrections391,392 are avail-
able for TMD materials, however di�erent approaches like coupled-cluster the-
ories393�395 or many-body quantum Monte Carlo396�399 known to improve over
GW accuracy are yet to be calculated.

Nature of band gap
problem

It well known that correct calculation of DFT band-gap is a challenging prob-
lem400�402 even for 3D semiconductors. For 2D crystals, as can be deduced from
many ab initio calculations (e.g. Ref.146,152), when thinning down MX2 semi-
conductors band gap for bilayer systems is still indirect (in MoS2 top of VB at
Γ, bottom of CB at Q point, located half-way between K and Γ), while mono-
layer system becomes direct gap semiconductor with band gap at the corner of
hexagonal Brillouin zone (at K-point). Interestingly, energy gap at K between
bands changes much less at K point than in other points, therefore process of
indirect to direct transition is mostly in�uenced by band structure change in
VB at Γ and in CB at Q. Precise estimation of relative position of CB minima
at K and Q at VB maxima at K and Γ is di�cult and seems to be depen-
dent on many details of calculations.153,229,382,386,403�405 It is known also that
substrate choice plays a role,406,407 which is intertwined with dielectric environ-
ment.408 Strikingly, hBN encapsulation was recently predicted to make MoS2

indirect gap semiconductor.409 Also, strain plays a pivotal role in bands renor-
malization.286,382,410�417 Further complications arise when discussing few-layer
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TMD's, e.g., GW theory of MX2 homo-bilayers418 suggest that band gap in all
is direct, however not always between Γ and Q (case of MoS2, MoSe2 and WS2),
but may change to be indirect between K and Q (case for MoTe2, WSe2, WTe2).

Spin-orbit splitting Fully relativistic ab initio calculations uncovered large spin - orbit splitting of
valence bands in MX2 monolayers.419 Spin texture in TMD's exhibits so-called
spin-momentum locking,34 which stems from combination of inversion symmetry
breaking420 and heavy atom nature of metal elements in MX2. Magnitude of spin
orbit splitting changes from around 140 meV in VB at K point in molybdenum-
based materials to as much as 400 meV for tungsten based materials.421 It is also
well established that spin orbit-splitting in CB is at least order of magnitude
smaller, however due to di�erent mechanisms can be modi�ed, e.g. enhanced
spin-splitting by electron interactions,422 dynamical e�ects423 and inter-/ intra-
valley phonon424 and plasmon257 contributions. By symmetry SOC vanishes at
M and Γ points of the Brillouin zone, however it's value at Q point in CB is
usually much larger than at K point, which stems from di�erent orbital compo-
sitions of the bands.421 Interestingly, strain tuning of spin-orbit splitting allows
not only to modify spin-resolved band structures,285,405,425�427 but also create
on-demand, spatially localized emitters288,428�433 which will be described later.
Also, due to electric �eld, so-called Bychkov-Rashba SOC may be present in
TMD's,434 allowing for spin-valley qubits control.80

Carrier doping and study
of defects

Additional problematic aspect of the band gap character in TMD's comes from
renormalization e�ects from excess charge carriers in conduction band.435�438

Density - dependent transition from direct (K-K) gap to indirect one (K-Q)
in monolayer TMD's has been predicted.439�441 Similarly to the case of strain
modi�cation of band structure, Q valleys energetic position is more sensitive
to carrier doping concentration than K valleys in conduction band. This e�ect
is important for e�ciency of excitonic photoluminescence,439 as well as for e.g.
phonon-mediated superconductivity in doped MoS2.347 Complicated aspect of
how doping may in�uence excitonic response is discussed further in text ( in
"Exciton interactions with Fermi sea"). It is worth mentioning also, that role of
dopants, vacancy and defects has been studied heavily using density functional
theory442�446 and di�erent experimental techniques,447�457 pointing to impor-
tation role of defect states engineering as additional way of enhancing desired
electronic properties.458,459

Tight-binding models For more intuitive understanding of physical picture, tight-biding model of elec-
tronic structure is usually desired. Early tight-binding models approximating
electronic structure of transition metal dichalcogenides were available as early
as in 70's.460,461 More recent tight-binding models tailored to reproduce DFT
band structures of monolayers started with describing electron properties with
d-orbitals localized only on metal atoms,462 immediately followed by models in-
cluding both d-orbitals on metals and p-orbitals on chalcogens.463�473 All those
models shed new light on several aspect of modeling of low-energy structure
of TMD's, however many of them were either highly complicated,464,465 or not
describing conduction band of TMD's satisfactory enough while keeping desired
short-range of hopping. Some of those models were able to describe also bi-layer
and bulk TMD's.464 One of the goals of this thesis is to construct TB model that
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will describe correctly main features of bands around Fermi level with minimal
number of orbitals used.

Massive Dirac fermion,
k · p and parabolic
dispersion models

Further simpli�cation is possible by restricting only to part of the Brillouin zone
(neighborhood of K points in TMD's) and modeling electronic structure there
using so-called k ·p theory.17 In the case of MX2 semiconductors, usual choice is
massive Dirac fermion model34 and it's extensions to either more terms in 2 band
Hamiltonian421,434,474,475 or adding more bands.476 Even further simpli�cation
of two-band massive Dirac fermion model is possible, leading to parabolic model
of bands, usually applied to empirical estimation of, e.g., g-factors of excitons180

or e�ective mass of carriers in magneto-transport experiments.477

QSHE phase in TMD'sWe note that from topological classi�cation point of view52 2H MX2 semicon-
ductors have topological index Z2 = 0 and are called topologically "trivial".
However, other phase of those materials is possible (namely 1T' phase), for
which there is an inversion of bands around Fermi level and consequently, change
of topological properties is predicted.478 Then material becomes quantum spin
Hall insulator. This scenario has been experimentally demonstrated for 1T'-
WTe2.99,100,479,480 Tight-binding models for TMD's in 1T' phase481�483 point
towards di�erent main composition of orbitals, being rather dx2−y2 and px in-
stead of d-only in case of 2H phase. Intriguing proposal to realize topological
phase transition via moire pattern in bilayer TMD's was proposed as well.484,485

Also, in bulk materials other interesting novel phases has been predicted and
measured, including Weyl semimetal in bulk WTe2.486

QSHE 2D crystals with
large spin-orbit coupling

QSHE phase in 2D materials were �rst predicted in graphene.53 It quickly be-
come clear that due to small spin orbit coupling487,488 detection of topologically
protected edge states is very challenging, however achievable.489 Those problems
sparked great interest in �nding materials with similar properties as graphene,
but with signi�cantly larger spin orbit coupling. Many proposals have been put
forward61 and high-throughput scans of 2D materials databases suggest there
there are many new materials to be discovered.490�495 One of the most promising
candidate for functional topological insulator devices are bismuth (111) mono-
layers,59,496,497 exhibiting largest know band gap in topological materials. In-
terestingly, this material shares overall honeycomb structure with TMD's and
large atomic number of atom corresponding to large value of atomic SOC, how-
ever due to di�erent band composition (consisting mainly from p orbitals of
Bi atoms) band inversion happens there naturally. Various proposals aimed at
further control and modi�cation of topological phase in bismuth-based 2D ma-
terials have been recently put forward,60,498,499 including this thesis author's
contribution.500�502

1.5 Theory of correlated optical excitations

DFT+GW+BSE
framework

As discussed above, usual work �ow of theoretical investigations into crystals,
aimed for example at predicting band-gap of a given crystal, has to include
approaches going beyond density functional theory, e.g. GW approximation.
This correction does not, however, take into account that optically created elec-
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tron - hole pair can interact strongly, forming so-called excitonic state.503 Suc-
cessful description of bound excitonic states requires analysis of two-particle
correlations, which can be done by solving Bethe-Salpeter equation (BSE),504

originally developed for bound states problems in high energy physics. Sub-
sequently this method has been applied to Wannier exciton problem505�507

and good agreement between theoretical508�511 and experimental results was
achieved for many di�erent semiconductors. Nowadays several ab-initio codes
implement DFT+GW+Bethe-Salpeter framework.512�517

Application to TMD's First-principles Green's function theory of optical excitations, even though it
was developed for 3D crystals, can also be applied to materials with di�erent
dimensionality. Many studies of excitons within DFT+GW+BSE

emerged.104,136,153,195,286,386,387,403,404,518�527Those studies correctly identi�ed
that excitonic e�ects in TMD's should be large153,386,518 due to reduced dimen-
sionality and resulting much weaker electron-hole interaction screening com-
pared to bulk crystals. Inclusion of spin-orbit coupling con�rmed general double
peak structure of optical response below band-gap, associated with existence of
valence band split A and B excitons.528 Existence of so-called C exciton as-
sociated with band nesting of states has also been established.519 Even though
there is large reduction of optical band gap when TMD's are strained, it has been
uncovered that strain does not modify exciton binding energy signi�cantly.403

Superiority of TMD's for photovoltaic applications compared to Si and GaAs
has also been proposed due to predicted enhancement of sunlight absorption.136

Strain-tunable nature of bandgap has also been put forward.286 Large di�erences
between binding energies of excitons on substrate supported and suspended de-
vices has been early realized.520 Variation of exciton resonance with temperature
has also been calculated.521,524 Large renormalization of band gap and large ex-
citon binding energies have also been studied for samples on top of graphene bi-
layers.104 First ab initio calculations of excited states of exciton series predicted
large deviations from non-hydrogenic series, and existence of 2p-2s splitting in
�rst shell of excited exciton states.195 Non-analytic (Dirac-like) dispersion of
exciton excited branches due to inter-valley coupling has been shown.387,522

Importance of corrections to linear dielectric function (Rytova-Keldysh theory)
in hBN encapsulated monolayers has been shown.523 Highly converged calcula-
tions uncovered common issues with numerical aspects of excitons in TMD's.404

Exciton �ne structure including spin dark states has been calculated in Ref.
529. Detailed studies in MoTe2 uncovered small variation of 1s, 2s A exciton
and 1s B-exciton binding energies between mono- and bi- layers.525 Energeti-
cally higher transitions relevant for electron-energy-loss spectroscopy has been
also studied.526 Mixing of A- and B- excitons via inter-valley exchange inter-
action has shown that understanding them in terms of "Ising" excitons may
not always be satisfactory.527 Theory of mixing between photons inside cavi-
ties and excitons has been calculated in Ref. 530. Calculations including both
spin- and momentum dark excitons in MoS2 became available recently.531 Ab

initio calculated properties of topologically split 2p states in MoSe2 have been
presented.203 Interestingly, DFT+GW+Bethe-Salpeter methodology has been
recently extended to study charged exciton complexes.240,532�534
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Figure 1.1: (a) Bound electron- hole pair energy states with respect to free
particle bandgap. (b) Summary of free particle bandgaps (black vertical lines)
obtained using di�erent methodologies compared to experimental peak position
for MoS2 on SiO2 and hBN (blue rectangles) and state-of-the-art calculation
including excitonic e�ects (G0W0+BSE, red plus). PBE result is our own DFT
calculation, other results are taken from: [1] - CMRDB database,535 [2] - Ref.
519, [3] - Ref. 536, [4] - Ref. 6, [5] - Ref. 143. We note that theoretical calculations
(except one for MoS2 on hBN) are performed for systems surrounded by vacuum.

DFT+GW+BSE vs
experimental optical
bandgap

"Free particle" transitions, calculated form e.g. DFT energies, are well known to
give incorrect optical band gaps in semiconductors. For both 3D and 2D crystals
this e�ect is caused by interplay of two e�ects: renormalizations of energies of
excited single-particle levels (known as electron and hole self-energies Σ) and
existence of bound electron hole pairs, called excitons. First e�ect is schemat-
ically depicted in Fig. 1.1 (a), where red dotted bands symbolize DFT bands,
e.g. at PBE level. Those bands, when carriers are excited and measured e.g. in
ARPES type of experiments, do not describe their energies correctly, because
electron in CB interacts di�erently with sea of electrons in VB. Also, miss-
ing electron in VB energy is renormalized. Those shifts in energies are usually
called self-energy corrections and can be calculated by so - called GW method.
GW renormalized bands are shown in Fig. 1.1 (a) as blue lines. Next e�ect is
related to electron hole interaction, which creates bound state with negative
binding energy, therefore exciton "band" lies below GW - corrected CB band
(see green exciton band in Fig. 1.1 (a)). Because e�ect of band renormalization
and negative binding energy of electron-hole pair have same order of magnitude,
sometimes it might create confusion that DFT describes correctly absolute en-
ergy of optical gap. For MoS2, experiments show that optical gap is located at
≈ 1.95 eV (position of 1s excitonic level), as shown in Fig. 3.3 (b). Interestingly,
PBE result underestimates this energy. Only after calculation of GW correction
one can obtain by solving Bethe-Salpeter equation correct estimate of absolute
position of 1s excitonic state (red plus in Fig. 1.1 ), coinciding with experimental
position of lowest PL excitonic peak.
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Interestingly, MoS2 put on two di�erent, most popular substrates SiO2 and hBN,
has almost exactly the same energy of optical gap. This is surprising, because it
is known that binding energies of excitons on those substrates should be signif-
icantly di�erent. Another confusing result is that absolute peak position shown
in Fig.1.1 (b) (G0W0 + BSE), almost identical as experimental, is calculated for
MoS2 in vacuum. Similarity of these values is coincidental and stems from before
mentioned cancellation of self-energy and excitonic re-normalizations, which are
true even when dielectric environment (vacuum, SiO2, hBN) is vastly di�erent.
Recent GW calculation of MoS2 on hBN536 helps to rationalize this, showing
actual position of GW-normalized "free particle" bandgap, showing that exci-
tons in MoS2 in vacuum are bound much stronger that for hBN encapsulated
samples. To best of our knowledge reliable ab initio calculations for same e�ect
on SiO2 are not available in literature yet.

Exciton calculation using
approximate methods

Due to many computational challenges inside DFT+GW+Bethe-Salpeter the-
ory, simpli�ed approaches to excitonic problem have been studied, including
various level of approximations, i.e., tight-binding,204,205,207,208,430,537�543 k · p
(massive Dirac fermion and beyond),34,217,522,544�551 and e�ective mass approx-
imations.112,173,266,408,552�562 Those approximations routinely use DFT as a
staring point, e.g. for calculation of e�ective mass of carriers and then simplify
somehow their interaction, e.g. assuming only Rytova-Keldysh screening563,564

without form factors coming from Bloch parts of electrons and holes. Those
methods, being conceptually and numerically trackable allowed for many fasci-
nating advances in understanding exciton properties in TMD's, as summarized
brie�y below.

TB exciton models Tight-binding studies allowed to track exciton �ne structure evolution depen-
dence on electron doping,537,538 exchange interaction,544 magnetic430 and elec-
tric �elds.542 Theoretical results on excitonic landscape have been show,208,541

together with results con�rming topological splitting of 2p states in exciton spec-
trum due to e�ect of Berry's curvature. Splitting of 2s and 2p states (and states
with di�erent symmetry in 3rd shell) have also been discovered.204 Dynamics
of excitons resulting in speci�c line-width broadening has been studied.207 Pos-
sibility of constructing dark-states based sensor of molecules205 has also been
proposed.

k · p and mDF exciton
models

Two-band k · p theory of edges of valence and conduction bands has been recog-
nized as early as in 2012,34 immediately relating physics of low-energy excita-
tions in TMD's to massive Dirac fermion physics, known from study of graphene
with increased SOC and other topological insulators. This model, used in ex-
citon properties calculations, allowed for better understanding of spin and val-
ley dynamics.546 Important role of inter-valley exchange interaction on exciton
with non-zero center-of-mass momentum522 and excited exciton series548 has
been studied. Relevance of Berry's phase properties of single electron wavefunc-
tions on excitonic spectrum has also been discussed,545 leading to the idea of
self-rotating excitons.551 In�uence od "Diracness" of low-energy Hamiltonian
description on excitonic spectrum has been studied in Ref. 549. Exciton states
with di�erent symmetries (s- and p- like) mixing and resulting activity of both
in single photon experiments has been predicted.550 Also, ground state of doped
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samples using variational approach has been studied in, e.g., Ref. 547.
E�ective mass exciton
models

E�ective mass approximation (EMA), i.e. parabolic model of dispersion with dif-
ferent e�ective masses for electrons and holes, despite oversimpli�cation of many
features of band structure of TMD's, allows to obtain some results that are not
easily available using more advanced methods. For example, studies have shown
that by �ne tuning of screening parameters of electron-hole interaction, results
comparable to BSE can be obtained.552 When EMA is employed together with
electron - hole interaction with static screening, analytical solution for both 3D
and 2D exciton are available. It has been noticed, however, that static screening
is not enough to explain experimental results on excited exciton series (Rydberg
series).173 Combination of EMA with screening "averaged" over exction's radius
allowed to obtain simple empirical formula for exciton binding energy for large
class of 2D crystals, showing crucial role of polarizability.556 Combination with
so-called Kratzer form of electron - hole interaction112 yielded good empirical
model for excited states Rydberg series in several hBN encapsulated TMD's.
Parametrization of di�erent screening parameters and polarizability for vari-
ous dielectric environments yield satisfactory method to explain experimental
results on excited states series of s-like excitons.408 Role of di�erent dielectric
surrounding,559 especially hBN encapsulated MoS2 samples has been measured
and calculated also in Ref. 266. Dynamical e�ects, e.g., exciton formation, ther-
malization and PL evolution has been studied in Ref. 560. Stark shifts for exci-
tons and trions has been studied under the assumption of parabolic dispersion of
carriers.558,561 Extending this description to more-than-two particle complexes,
it is possible to obtain using variational methods not only trion, but also e.g.
biexcitons, exciton-trion and exciton bound to charged defects energies.553,557

Con�guration -
interaction language

Alternatively to Bethe-Salpeter equation, exciton properties can be calculated
from con�guration-interaction approach to interacting electrons,565,566 particu-
larly useful in studies of nanostructures, e.g. quantum dots81,567�582 or electron
gas in quantum wells in strong magnetic �eld.583,584 This approach is based on
expansion of interacting wavefunction in basis of excitations with growing num-
ber of excited pairs (called singlets, doublets, triplets etc.) with speci�c rules
for coupling between sub-spaces, connecting ground state only with doublet
excitations, but every other subspace with two subspaces with one and two ex-
citations more (e.g. singlets with doublets and triplets). This approach has only
recently been utilized to study excitons in reciprocal space.5,533 Con�guration-
interaction method, being long-known for theoretical simplicity and formidable
computational challenge due to large Hilbert space, is therefore di�erent theo-
retical route to study properties of excitons than GW+Bethe-Salpeter method
based on Green's function perturbation theory. Although connection between
consecutive steps and approximations in those two methods is known,566,585,586

necessary truncations of expansions for con�guration interaction, coupled clus-
ter and "beyond-GW" methods394,587�592 introduce errors in ground and excited
states energies that are yet to be understood for TMD's. In this thesis, following
methodology known for interacting electron problem in quantum dots567 and
Landau levels,583 con�guration-interaction method for exciton in TMD's will be
constructed
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Alternative approaches One has to remember, that there exist di�erent methods to calculate optical re-
sponse of excitons, trions and systems with even more particles in both molecu-
lar and periodic systems. One class of methods stems from Heisenberg equation
of motion and was dubbed "semiconductor Bloch equations".436,548,593�598 An-
other approach is related to real space representation of kinetic energy of elec-
trons and holes (usually parabolic dispersion of carriers is necessary) and utilizes
variational approach.552,557,599,600 When real-space kinetic energy is approxi-
mated by parabolic model, di�usion Quantum Monte Carlo methods have also
been used to study optical response of TMD's.554,601,602 Results for optical com-
plexes with several particles hve also been obtained using path integral Monte
Carlo method.555 Most recently, combination of tensor networks and density
matrix renormalization group-like methods has been used to study exciton and
bi-exciton ground603 and excited states.604 Focusing on excitonic problem only,
to lower computational complexity of Bethe-Salpeter equation, methods based
on density functional theory which include electron-hole interaction in exchange
correlation potential are also well-known,605�608 and it's theoretical equivalence
to Bethe - Salpeter theory was shown.609 Successful calculations of weakly bound
excitons in 3D solids was achieved,610�614 despite several di�culties connected
to e.g. lack of theorems relating unique density to energy of excited states615 and
problems constructing good exchange - correlation potentials.503 Going beyond
"continuum excitons" was also achieved e.g. by solving so-called "Casida equa-
tions".616 Only very recently TDDFT solution for response function in hBN and
MoS2 was possible,617,618 reproducing A and B excitonic features, comparing
favorably with GW+BSE method at the fraction of computational resources
necessary. Focusing for a moment on trions, several methods for calculating
their properties in ultra-low doping regime are available, including (beyond al-
ready mentioned) methods that utilize so-called Jacobi coordinates619 leading to
1D problem in higher-dimensional space that can be solve numerically. Slightly
di�erent approach using hypershperical harmonic functions and leading to cou-
pled equations parallel to so-called Fadeev equations for 3D trion problem620

has also been used recently to study both positively and negatively charged
trions in whole MX2 (M=Mo,W, X=S,Se,Te) family of TMD's.

Exciton interactions with
Fermi sea

As mentioned previously, calculation of exciton optical properties is even more
di�cult when �nite density of electrons in conduction band is taken into account.
Additionally to simple band renormalizations disused earlier, exciton binding
energy also get's renormalized due to enhanced screening of electron-hole inter-
actions.621 However, it is known from physics of 2D electron gas in quantum
wells, that for su�ciently high doping optical response is not coming mainly
from excitons, but from so-called "Fermi edge singularity".211,622 At low dop-
ing, trion formation and it's relative response compared to exciton is fairly well
understood.211,623�625 When density of excess carriers is in intermediate regime,
picture of three interacting carriers has to be changed to picture of an exciton
interacting with Fermi sea of excess carriers.258,626,627 More precise calculations
are necessary to resolve many con�icting results, especially when Fermi energy
for n-doped samples reaches trion binding energy, as recently summarized in
Ref. 628.
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Topological e�ects in
excitonic spectrum

In addition to unusual behavior of excited state exciton Rydberg series in TMD's
due to Rytova-Keldysh screening of electron-hole interaction,173 modi�cation to
whole spectrum resulting from topological properties of electron wavefunctions
has to be taken into account.551,629 Novel type of 2p-2p exciton splitting due
to topological terms entering electron-hole direct interaction was recognized
some time ago204,430,541,545 and recently measured experimentally.203 These
advances paved the way for generalized optical selection rules in gapped fermion
systems, where classi�cation of optical transitions has to taken into account
underlying topology of the system and consequently allows for additional means
of control.630�632 All selection rules for MoS2 has recently been summarized
in Ref. 633. We note that e�ect of Berry's curvature on optically addressable
complexes is not restricted to excitons.634 It is worth noting also that novel
properties of excitonic spectrum due to di�erent topology has been recognized
�rst in area of topological insulators.635�637

1.6 Electronic properties of TMD's quantum dots

TMD's nanoribbons and
�nite clusters

When reducing dimensionality of 2D material by one (cutting �nite width rib-
bon out of 2D plane), creation of so-called nanoribbon is possible, as pioneered
by studies in graphene.638�645 Usual scenario is that when nanoribbons get thin-
ner, electronic band-gap should grow due to size quantization. In graphene, due
to it's topological properties, situation is more complicated due to occurrence of
edge-termination dependent edge states. In MoS2 (and other TMD's from MX2

family646,647) due to it's large semiconducting gap and trivial topology in 2H
phase one could expect that there will be no in-gap states. This is, however, not
true and metallic edge states in both armchair and zigzag type nanoribbons have
been theoretically predicted and observed in transport experiments,373,648�650

as well as novel optical response of the edges has been measured651 and dis-
cussed theoretically in the context of "edge excitons".652 These states can be
understood as coming from speci�c topology associated with one of the two val-
leys of MoS2. Properties of these edge states have been studied extensively653

and many interesting phenomena have been predicted.654�663 Further reduction
of dimensionality to "0D", i.e., �nite systems (usually called quantum dots, or
for very small structures also (nano)clusters) has been focus of long interest for
MoS2 due to it's usefulness in catalysis.370,664�666 Metallic edge states, simi-
lar to edge states in nanoribbons have been studied in nanoclusters.372,667�669

MoS2 2D clusters have been recently obtained using lithographic,670 solution-
based671�674 techniques, which can be extended to other TMD's.675�678

Spin-valley mDF qubitsFrom the point of view of quantum computing, it has been early recognized
that electrons (or holes) trapped inside quantum dots can serve as perfect quan-
tum two-level information carrier, i.e. a qubit, utilizing either ground or excited
states as 0 and 1 state679,680 or carrier's spin.681�694 Carriers con�ned in quan-
tum dots with states derived from bottom of the conduction band in TMD's and
described approximately by massive Dirac Fermion theory have been proposed
as qubits, allowing novel schemes due to valley degree of freedom.80,434,695�704
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Similarly to proposals in carbon nanotubes,705 spin-valley coupled "Kramers
qubit"434 was proposed as realistic way of de�ning a qubit. Inter-valley interac-
tion due to con�nement potential has been studied in Ref. 695. Optical696,699

and electrical80,702 manipulation of spin-valley qubits have also been studied,
together with magnetic means of control.697 Due to challenging problem of in-
ducing valley coupling between Kramers qubits700 di�erent scenario based on
spin-only qubit has been studied.698,704 Interactions between spin-valley qubit
in two quantum dots and possible realization of quantum logic gates has been
analyzed.701 Additional degree of freedom coming from angular momentum of
atomic orbitals706 in valence band has also been proposed for spin-valley-orbital
qubit.703 Recent advances in the �eld of spin-valley qubits has been summarized
in Ref. 707.

Defect-induced quantum
dots in TMD's

As mentioned previously, spatially localized emitters428�433 in TMD's can be
formed due to strain. These emitters behave like quantum dots, e�ciently con-
�ning photo-carriers in small regions. Spectrum of those dots resemble Fock-
Darwin spectrum due to speci�c form of strain inside "bubbles".708 Single
photon emission from those sources has been achieved709,710 and determinis-
tic creation of such quantum emitters via strain engineering has been demon-
strated.292,433,711�714 Integration of such single-photon emitters with silicon
photonic chip is possible,715 along with coupling to plasmonic waveguides.716,717

Recently, interactions between excitons trapped inside quantum dot emitters has
been demonstrated.718 Recent advances in this subject has been summarized in
Ref. 719. Optical initialization of spin-valley hole state in WSe2 in such quantum
dots has been shown in Ref. 720, along with selective loading of such localized
emitters in Coulomb blockage regime.721 We note that exciton con�nement can
also be obtained by creation of moiré pattern,324,722�724 allowing e.g. to engineer
topologically non-trivial exciton bands.725

Experiments on TMD
gate-de�ned quantum

dots

Alternatively to �nite clusters and strain-induced con�nement, matured tech-
nology of gate-de�ned quantum dots exists.14 By creating lateral con�nement
using metallic gates, trapping of electrons or holes can be achieved. This route
to carrier con�nement avoids necessary control of complicated edge physics
and allows for electrical only fast qubit operations. Some demonstrations in
bilayer graphene726�730 and monolayer InSb exists731,732 In TMD's, experimen-
tal demonstrations are scarce and this �eld is only at it's infancy. Up to now,
relatively large, gate de�ned quantum dots have been reported.733�738 Tunable
size, single electron transport and tunable coupling have been achieved.733,734

Further advances in fabrication methods increased mobility of electrons.735 Zero-
dimensional con�nement of charged exciton has also been demonstrated in tri-
layer MoS2.736 Coulomb blockage and signatures of single-electron transport
have also recently been reported.738 One of the goals of the following work is to
understand nature of con�ned states is such gate de�ned quantum dots.

Role of strong
interactions

In addition to single particle aspects of tunability of gate-de�ned quantum
dots (e.g. by shape, depth of con�ning potential, size), electronic states can be
also greatly in�uenced by tunable interactions,567,739,740 resulting in e.g. mag-
netic order,573,741 entanglement742 or electron - hole condensation576 in quan-
tum dots. In terms of ground state of electronic system, in TMD's situation is
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even more complicated743 due to possible symmetry breaking associated with
spin169,170 and valley polarized167,168 ground states. Systematic study of e�ect
of con�nement and tunable interactions on spin-valley con�gurations of ground
and excited states in TMD's quantum dots is, however, still largely unexplored
and some results in this matter will be discussed in this thesis.
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Chapter 2

Electronic properties of single

layer MX2 crystals

We begin this Chapter with presentation of ab initio calculations for monolayers
of MX2 semiconductors, focusing on orbital symmetry identi�cation and role of
spin-orbit coupling. Next, tight-binding model is constructed and parametrized,
along with massive Dirac fermion and e�ective mass approximations. Then,
mechanism of band gap opening and emergence of secondary minima in con-
duction band are studied. Chapter is concluded with discussion of Landé and
valley Zeeman e�ects.

2.1 Ab initio band structure calculations

2.1.1 Structural properties of MX2 single layer

We begin with general description of MX2 single layer crystals in 2H phase.
In those compounds atoms are arranged in trigonal prismatic structure (P-6m2
space group). Unit cell consists of three atoms, one metal (blue dots) and two
chalcogens (red dots), as shown in Fig. 2.1. Looking from the top, arrangement
of atoms reminds that of graphene (Fig. 2.1 (a)). Looking from the side, one can
notice that atoms are actually organized in 3 planes, one (central) metal plane
and two chalcogen planes shifted by ±d⊥. Distance between metal atom and
central position between two chalcogens is denoted by d‖. We de�ne primitive
vectors of real space lattice as ~a1 = d‖(0,

√
3) and ~a2 = d‖(3/2,−

√
3/2). Lattice

constant a0 = dM−M can be written as a0 = d‖
√

3 and d⊥ = dX−X/2, as shown
in Fig. 2.1. Following commonly practiced ab initio procedure, we take lattice
constants a0 from experimentally known bulk structures421 and relax geome-
try. All details of DFT calculations are summarized in Appendix 6.1. Lattice
constants calculated using PBE exchange-correlation functional are collected in
Table 2.1. They show noticeable increasing trend when changing from sulfur
to selenium to tellurium. Much smaller change is observed when going from

39



Figure 2.1: (a) Top view of the structure of MX2 in 2H phase: metal atoms are denoted by
blue dots, and chalcogen by red ones. (b) Side view of MX2, showing that atoms are organized
in 3 layers, central metal and two chalcogen, with structural constants parametrized by d‖
and d⊥.

d‖ in [Å] d⊥ in [Å]
MoS2 1.8393 (1.8391 (PBE), 1.8247 (exp.)) 1.5622 (1.5623,1.5850)
MoSe2 1.9184 (1.9162, 1.8983) 1.6694 (1.7186, 1.6675)
MoTe2 2.0605 (2.0536, 2.0317) 1.8112 (1.8098, 1.8020)
WS2 1.8414 (1.8360, 1.8210) 1.5714 (1.5764, 1.5700)
WSe2 1.9188 (1.9145, 1.8972) 1.6792 (1.7355, 1.6700)
WTe2 2.0625 (2.0513, - ) 1.8170 (1.8197, - )

Table 2.1: Structural constants obtained from our DFT (PBE) calculations
for MX2 materials. In brackets �rst PBE and then experimental values from
literature421 are given.

molybdenum to tungsten.

Having de�ned real space unit cell and primitive vectors, in next step we calcu-
late reciprocal lattice vectors~b, which should satisfy relation ei~b·~a = 1. This gives
in 2D set of four equations ~bi ·~aj = 2πδi,j for i, j ∈ 1, 2 that has to be solved for
~b1,2. The solution yields ~b1 = 2π/d‖(1/3, 1/

√
3) and ~b2 = 2π/d‖(2/3, 0). Those

vectors de�ne Brillouin zone, shown in Fig. 2.2. We note that such choice of real
and reciprocal space primitive vectors gives the following position of hexagonal
Brillouin zone corner at K1 = (0, 4π/(3

√
3d‖)) which is called K-point, just as

in graphene. All other K points are obtained by successive application of C6

rotation. We note, that in half of the distance between K - points and Γ point
there are so called Q-points (alternatively Σ439 or Λ560 points). Halfway between
two nearest K points lie so-called M points.

2.1.2 DFT band structures at GGA level

Now we describe general features of DFT bandstructure, choosing as an repre-
sentative example MoS2. In Fig. 2.3 (a) one can observe 11 bands around Fermi
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Figure 2.2: Brillouin zone de�ned by vectors ~b1 and ~b2. Positions of 6 K-points and corre-
sponding 6 Q - points are also shown.

level (set to 0), with large gap to bands below them ( 7, 30 and 55 eV sepa-
ration, those deep bands being almost non-dispersive) and signi�cantly smaller,
but still well resolved gap to bands above ( 2 eV at Γ point). Direct bandgap at

Figure 2.3: (a) Band structure of MoS2 on Γ-M-K-Γ line, calculated using DFT (PBE)
without spin-orbit coupling. Fermi level is shown as horizontal red line. (b) Zoom to valence
and conduction bands with fundamental band gap at K point shown as ∆GAP. Gaps to
secondary maxima (minima) at Γ- (Q-) points in valence and conduction bands are denoted
by ∆K−Γ and ∆K−Q , respectively.

K point without SOC is equal to ∆GAP = 1.67 eV. We note that both valence
band (VB) and conduction band (CB) have secondary extrema, at Γ point in VB
and at Q - points in CB. In Fig. 2.3 (b) we denote energetic di�erence between
primary and secondary minima as ∆K−Γ = E(K)− E(Γ) in VB and ∆K−Q in
CB, which in MoS2 have values -8.6 meV and -263.4 meV, respectively. It should
be stressed that for calculation without spin - orbit interaction the smallest gap
between VB and CB is actually located between Γ in VB and K point in CB.
This is due to, general in MX2 family, small negative splitting between energies
in top of the valence band at K and Γ points (∆K−Γ ≈ 10 meV), which changes
sign when spin - orbit interaction is included.

In next step we study general properties of DFT Kohn-Sham wavefunctions.
First, we choose 3 spheres around one Mo and two S2 atoms, as shown in
Fig. 2.4 (a) and calculate how much of the wavefunction is localized inside
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each sphere. We note that 11 bands around Fermi level have wavefunctions
that are in general localized on both Mo and S2 atoms, however there is clear
trend that VB and bands above are mainly localized on Mo atoms, and VB-1
and lower bands on S2 atoms. DFT wavefunctions inside spheres can be next
projected onto Slater orbitals, as described in Appendix 6.2. We �rst con�rm
that largest overlap is achieved, in case of MoS2, with localized Slater, single-
zeta basis744,745 consistent with orbitals with principal quantum number n =
4 on Mo and n=3 on S. For other compounds, eg. WSe2, there is clear better
numerical overlap with orbitals with quantum numbers n=5 for W and n=4 for
Se, con�rming that such projection is a reliable tool in studying symmetry and
orbital composition properties of DFT wavefunctions. In next step, summarized
in Fig. 2.4 (b) for each wavevector k and energy E DFT wavefunctions are
projected onto symmetric and anti-symmetric orbitals with respect to the metal
plane. One can observe, that VB and CB are symmetric across majority of
the Brillouin zone, with exception of parts close to Γ point in CB, at which
anti-symmetric states are lower than symmetric ones. This ordering of bands
and their symmetry is general to all MX2 family and is presented for another
example of WSe2 in Appendix 6.3.

2.1.3 Analysis of orbital composition

Figure 2.4: (a) Schematic representation of spheres around Mo atom and S2 dimer which are
used for DFT wavefunction analysis and orbital symmetry identi�cation. (b) Color-mapped
localization of a given k-resolved eigenenergy on Mo and S2 spheres and symmetry of eigen-
values across Brillouin zone. Circles (crossed rectangles) denote symmetric (anti-symmetric)
orbitals with respect to metal plane.

In next step orbital - resolved decomposition of wavefunctions is performed. As
mentioned previously DFT wavefunctions are projected onto Slater orbitals with
parameters describing isolated atoms,744,745 see 6.2. In Fig. 2.5 each eigenvalue
for each vector k is projected onto symmetric metal (4d m = −2, 0, 2) and sul-
fur dimer orbitals (proper combinations of upper and lower sulfurs, e.g. "3p0"
meaning 1/

√
2(|3pS−up0 〉− |3pS−down0 〉) and anti-symmetric ones. Both symmet-

ric and anti-symmetric projections are normalized independently inside Mo and
S spheres, therefore they show only information which quantum number con-
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tributes to a given state and do not distinguish that e.g. 4d+2 orbitals on metal
contribute to bottom of valence band at K point 2 orders of magnitude more
than "3p+1" sulfur states. In Fig. 2.5 one can immediately notice, that close to
the K point in VB bands are combination of 4d+2 and 3p+1 orbitals. Contrary
to VB, in CB 4d0 state coupled to 3p−1 state dominates. Higher symmetric
conduction band (CB+1) (4d−2) is coupled to 3p0 state. Coupling between
anti-symmetric d and p states is also clear from right panel of Fig. 2.5, in which
4d−1 state is coupled to anti-symmetric 3p+1 and 4d+1 to both anti-symmetric
3p−1 and 3p0 states.

Figure 2.5: Collected symmetric and anti-symmetric orbital contributions to
bands in MoS2.

2.1.4 Spin-orbit splitting of bands

Due to heavy nature of atoms in MX2 family (e.g. atomic number of Mo =
42, W = 74, Te = 52), one can expect that relativistic spin - orbit interaction
may in�uence band structure heavily. Results of PBE + SOC calculation for
MoS2 are presented in Fig. 2.6. Major e�ect of SOC is visible in VB at K
point, where bands are spin-split by ∆SOC

V B = 148 meV. It is worth mentioning
that this is the smallest splitting in VB at K point in MX2, which in WTe2

reaches almost 500 meV. All values of gaps for di�erent MX2 combinations are
summarized in Appendix 6.3. Signi�cantly smaller splitting is observed in CB
at K point in MoS2 (∆SOC

CB = 3 meV), reaching up to 50 meV in WTe2. This
order of magnitude less pronounced e�ect comes from the fact that majority
(80%) d-like orbital in CB has quantum number md = 0, therefore splitting
must comes from admixture of p-orbitals ( 10%) from chalcogen atoms. What is
also important, there is a signi�cant spin splitting in second minimum of CB at
Q point, which is larger than at K point, pushing the relative distance between
CB minimum at K at Q point (∆SOC

K−Q) close to small values, making CB almost
degenerate, e.g. in WSe2. Let us note also that by symmetry there is no spin
splitting along Γ-M line on BZ.
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Figure 2.6: Spin splitting of even bands in MoS2.

Let's now discuss spin arrangement of bands in VB and CB extrema. Fig. 2.7
summarizes spin orientation (Ŝz operator eigenvalues) in so-called "bright" (left
panel, e.g. MoS2) and "dark" (right panel, e.g. WSe2) materials. In bright MX2

(M=Mo) highest VB state at K point has the same spin arrangement as lowest
CB at K- and Q-points. When analyzing states in opposite valley (-K, -Q), all
spins are �ipped, constituting spin-valley locked system. Interestingly, in dark
materials the situation is di�erent, where top of VB has opposite spin than
bottom of CB at K point, but the same as bottom of CB at Q point. Let us
note that spin splitting at Q - point is similar in VB and CB, because they are
composed from md = ±2 orbitals.

2.2 Construction of low-energy e�ective theory

2.2.1 NN tunneling matrix element and orbital couplings

Building upon our analysis of DFT results (both presented in previous sub-
section and those done in collaboration with other co-authors of Ref. 1), we
conclude that there are several common features in band structures of all MX2

materials. Most notably, all show existence of direct band-gap at K-points, in
opposite to their N ≥ 2 layer form, which are indirect-gap semiconductors.152

All materials exhibit also second minimum in conduction band, localized close to
Q-points. Analyzing orbital compositions of the valence and conduction bands
we conclude, that they are described by orbitals even with respect to metal
plane. This result is consistent with several other works, therefore we can start
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Figure 2.7: (Left) Comparison between spin splitting in bright material (here
MoS2) at K and Q points in both +K and -K valleys. (right) Spin arrangement in
dark materials (here WSe2), showing reversed order of states in CB at K point,
but not at Q point. All states in the -K valley are opposite are not shown. All
values are given in eV.

building tight-binding model of those materials from orbitals contributing most
to the band structure around Fermi level.

Our conclusion is that minimal tight-binding model has to include orbitals that
are even with respect to inversion symmetry about z plane of metal atoms (z →
−z). Motivated by ab initio results, at least L = 0,±2 d - orbitals from metals
and L = 0,±1 symmetric symmetric p - orbital compositions from top and
bottom sulfur atoms has to be taken into account. Those orbitals are discussed
further in Appendix 6.2. We note only that for d orbitals of metals situation is
clear, namely orbitals with given L = 2 and m = −2, 0,+2 are centered around
M atoms. However, orbital construction for two chalcogens must be done with
care. Because we de�ne so-called dimer orbitals, that are centered around the
same plane as metal atoms, we begin with upper (U, ~RU = (0, 0,+d⊥) with
respect to dimer center) and lower (L, ~RL = (0, 0,−d⊥) p-orbitals with quantum
numbers L = 1, m = ±1 φ and de�ne dimer orbitals ϕ as proper combination
of those two:

ϕL=1,mp=±1(~r) =
1√
2

[
ϕUL=1,mp=±1(~r − ~RU ) + ϕLL=1,mp=±1(~r − ~RL)

]
(2.1)

For L = 1, m = 0, due to the nodal structure of pz orbitals, dimer has to be
constructed in such a way, that it needs to still to be symmetric with respect
to z inversion. This can be achieved by changing sign of one of the orbitals (we
choose to change sign of the bottom one):

ϕL=1,mp=±0(~r) =
1√
2

ϕUL=1,mp=0(~r − ~RU ) −︸︷︷︸
!

ϕLL=1,mp=0(~r − ~RL)

 . (2.2)

To conclude, our Hamiltonian in which tight-binding model will be constructed
will be acting on spinor composed of metal orbitals ϕL=2,md and dimer orbitals
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ϕL=1,mp arranged in the following order:

Ψ = [ϕ2,−2, ϕ2,0, ϕ2,+2, ϕ1,−1, ϕ1,0, ϕ1,−1]
T
. (2.3)

In the next step, we construct linear combination of atomic orbitals for all
orbitals discussed above. First, we note that thanks to our dimer orbital con-
struction, it makes sense now to talk about A (metal positions, τ1 = (0, 0, 0)

inside unit cell) and B (chalcogen dimer centers, τ2 = (d‖, 0, 0)) sublattices on
real-space hexagonal lattice. Because we aim to understand fundamental prop-
erties of those materials in terms of graphene physics, we focus on sublattice A -
sublattice B interaction. We write LCAO wavefunction for A and B sublattices
separately:

Ψ
~k
A,md

(~r) =
1√
NUC

NUC∑
i=1

ei
~k·~RA,iϕL=2,md

(
~r − ~RA,i

)
(2.4)

Ψ
~k
B,mp (~r) =

1√
NUC

NUC∑
i=1

ei
~k·~RB,iϕL=1,mp

(
~r − ~RB,i

)
(2.5)

and then the total electron wavefunction is given by

Ψn,~k (~r) =
∑

md∈{−2,0,+2}

An,
~k

md
Ψ
~k
A,md

(~r) +
∑

mp∈{−1,0,+1}

Bn,
~k

mp Ψ
~k
B,mp (~r) (2.6)

First, let us try to understand the physics of why considered MX2 materials
are semiconductors instead of semimetals such as graphene. To do that, let us
analyze tunneling matrix element between central A atom from Fig. 2.8 with
potential VA (~r) and three nearest neighbor B atoms in positions ~RB1

, ~RB2
, ~RB3

:

〈Ψ~k
A,m

d
|Ĥ|Ψ~k

B,mp
〉 =

∫
d~rϕ∗l=2,m

d
(~r)VA (~r) ·

[
ei
~k·~RB1ϕl=1,mp

(
~r − ~RB1

)
+

ei
~k·~RB2ϕl=1,mp

(
~r − ~RB2

)
+ ei

~k·~RB3ϕl=1,mp

(
~r − ~RB3

)]
.

(2.7)

One can notice, that exactly at K point, this formula gives

〈Ψ~k=K
A,m

d
|Ĥ|Ψ~k=K

B,mp
〉 =

(
1 + ei(1−md+mp)2π/3 + ei(1−md+mp)4π/3

)
Vpd, (2.8)

where Vpd are standard Slater - Koster integrals. For such combinations of md

and mp quantum numbers, that 1 +mp−md = 0,±3 tunneling matrix element
is non-zero 〈Ψ~k=K

A,m
d
|Ĥ|Ψ~k=K

B,mp
〉 6= 0. This is di�erent than same tunneling matrix

element in graphene, in which only L = 1, mp = 0 pz orbitals play role and
give 〈Ψ~k=K

A,mp
|Ĥ|Ψ~k=K

B,mp
〉 = 0. Non-vanishing tunneling will, therefore, open gap

at K point, resulting in gapped, massive Dirac fermion dispersion instead of
Dirac point at K, see Fig. 2.8. Non- zero interaction between di�erent md and
mp orbitals at K point leads to the following pairs of orbitals that are coupled:
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Figure 2.8: Comparison between A-B sublattice tunneling in graphene and
MoS2.

[md = −2,mp = 0], [md = 0,mp = −1], [md = 2,mp = 1]. Similar analysis at -K
point leads to selection rule

− 1 +mp −md = 0,±3. (2.9)

Resulting couplings are then [md = −2,mp = −1], [md = 0,mp = 1], [md = 2,mp = 0].
Finally, at Γ point we obtain di�erent scheme of couplings: [md = 0,mp = 0],
[md = 2,mp = −1], [md = −2,mp = 1]. We note that all those couplings ex-
plain couplings detected by analyzing even DFT wavefunction symmetries, as
summarized in Fig. 2.5.

2.2.2 Nearest- and next-nearest TB Hamiltonian

In next step we move to discussion of nearest neighbor (NN) and next- near-
est neighbor (NNN) tight-binding Hamiltonian. Standard procedure outlined by
Slater and Koster (SK)18 is used. All details of this straightforward but cum-
bersome calculation are moved to Appendix 6.4. We note only that because in
our basis we are using complex orbitals, SK formulas cannot be used directly
and we had to implement them into more complicated fashion, which is hid-
den in our notation behind functions V , depending on SK parameters. Full NN
Hamiltonian can be written in block form as:

H
(
~k
)

=

[
HM−X2

H†M−X2

]
(2.10)
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where NN tunneling between 3 metal and 3 dimer orbitals is given by a 3 by 3
matrix

HMo−S2 =

V1f−1(~k) −V2f0(~k) V3f1(~k)

−V4f0(~k) −V5f1(~k) V4f−1(~k)

−V3f1(~k) −V2f−1(~k) −V1f0(~k)

 (2.11)

inside which functions V depend on structural properties and SK parameters.
For example, V1 is given by

V1 =
1√
2

d‖

d

[√
3

2

(
d2
⊥
d2
− 1

)
Vdpσ −

(
d2
⊥
d2

+ 1

)
Vdpπ

]
, (2.12)

where d‖, d⊥ are given in Table 2.1 and d =
√
d2
‖ + d2

⊥. Functions f are proper

combinations of exponents and depend on wave vectors ~k = (kx, ky), e.g.

f−1

(
~k
)

=
[
eikxd‖ + e−ikxd‖/2ei

√
3kyd‖/2ei2π/3 + e−ikxd‖/2ei

√
3kyd‖/2ei4π/3

]
.

(2.13)
This Hamiltonian is a generalization of a Hamiltonian describing graphene, in
which there are also two triangular sublattices of atoms, however in MX2 we
have to take into account three d-orbitals on one sublattice, and three dimer
orbitals constructed out of three p-orbitals. Later we will discuss that due to
speci�c symmetry of the lattice and orbital compositions in high symmetry
points in BZ, in NN model it is not possible to open gap within group of d-
orbitals across whole BZ, therefore NN model is not su�cient to describe MX2

materials properly and hopping to NNN has to be included.

Details of the NNN model presented below are also discussed in Appendix 6.4.
We note that each metal atom has 6 NNN and all possible hoppings between
md = ±2, 0 orbitals are taken into account, adding 3 new SK parameters
Vddσ, Vddπ, Vddδ. For sulfur dimers, we neglect "crossed" interactions between
upper and lower chalcogenides, e.g. top p−1 sulfur orbital is not interacting
with NNN dimer lower sulfur orbital, consistent with idea it is not it's NNN.
Taking into account NNN p-orbital interactions two new SK parameters have
to be included, namely Vppσ and Vppπ. Full NNN Hamiltonian written again in
block form is given by

H
(
~k
)

=

[
HM−M HM−X2

H†M−X2
HX2−X2

]
(2.14)

where matrix describing metal-metal NNN interactions is given by

HM−M =

Emd=−2+W1g0(~k) W3g2(~k) W4g4(~k)

Em
d

=0+W2g0(~k) W3g2(~k)

Em
d

=2+W1g0(~k)

 (2.15)

and corresponding matrix describing X2 −X2 dimer interactions is given by

HX2−X2
=

Emp=−1+W5g0(~k) 0 −W7g2(~k)

Emp=0+W6g0(~k) 0

Emp=1+W5g0(~k)

 .
(2.16)

48



As previously, complicated structure of SK parameters is hidden behind func-
tions W, e.g. for W1 we have

W1 =
1

8
(3Vddσ + 4Vddπ + Vddδ) . (2.17)

Functions g, depending on wave vector ~k combining proper summation of plane
wave functions to six NNN are, for example for g0, given by

g0

(
~k
)

= 4 cos

(
3

2
kxd‖

)
cos

(√
3

2
kyd‖

)
+ 2 cos

(√
3kyd‖

)
. (2.18)

As discussed later, we �nd that Hamiltonian 2.14 presents a minimal model
that describes correctly band gap across whole BZ and is able to quantitatively
reproduce orbital compositions of VB and CB. We note that last column (except
diagonal element) in full NNN Hamiltonian has sign opposite to the one used in
Ref. 1 due to di�erent convention of complex spherical harmonics (with Condon-
Shortley phase) used in this Thesis. Here, complex and real orbitals are related
by ϕmp=±1

= ∓1/
√

2(ϕpx ± iϕpx), di�erently to Ref. 1 in which ϕmp=±1
=

1/
√

2(ϕpx ± iϕpx).

2.2.3 Slater-Koster parameters �tting procedure

After derivation of our tight-biding Hamiltonian, we turn to the problem of �t-
ting SK parameters. Our goal is to obtain dispersion for even bands from TB as
close as possible to even bands obtained and detected using ab initio method, as
described above. We note that in principle it is possible to calculate SK param-
eters directly from �rst - principles calculation,25 however resulting electronic
dispersions are not satisfactory neither for graphene,746 nor for MoS2,466 espe-
cially for unoccupied electronic states (CB and higher bands). Those parameters
can be treated as a starting point for our analysis, however we do not reproduce
those calculations and focus on available data to make our simplest TB model
usable for excitonic and quantum dot properties simulations.

General problem with SK parameters is that even if we �x structural parameters
d⊥ and d‖, we still end up with 10-dimensional, highly non-linear optimization
problem, depending on energies Emd=0 = Emd=±2, Emp=0, Emp=±1, Vdpσ, Vdpπ,
Vddσ, Vddπ, Vddδ, Vppσ, Vppπ. We have tested various schemes for choosing those
parameters to �t dispersion of such model to DFT. One of the possible proce-
dures that gives reasonable results is performed in the following way:

1. We choose some initial values for all parameters. This choice has to at least
open gap in the whole BZ between CB and VB and should not give wrong
(in sense of majority contribution) orbital compositions to bands. Our �rst
choice, done by trial and error, was loosely based on parameters given in
literature.464,465 After �nding good overall �t for one material (MoS2) we
choose this parametrization as a starting point for next materials (e.g.
WSe2).
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2. Then, we choose direction in the Brillouin zone along which we will �t our
model. We have chosen Γ−M−K−Γ line in our procedure. Alternatively,
it is possible to perform this procedure for all points in BZ at higher
computational cost.

3. Then, we assign di�erent weight to di�erent bands and parts of directions
in BZ (e.g. we want better �t in K point than in Γ, better representation
of CB for quantum dot calculation, better VB-CB transition energy for
excitonic calculations etc.).

4. Next we choose some range of values for which we will try to �nd better
parametrization, e.g. we allow for Ed energy to change between Ed ±
∆Ed/2, where initial ∆Ed = 2 eV.

5. We choose randomly for every SK parameter (e.g. ∆Ed) new update from
given interval and calculate band structure.

6. In next step, we calculate energetic distance between bands obtained by
TB and DFT as ∆E

V B(CB)
TB−DFT (~k) = |EV B(CB)

TB (~k)−EV B(CB)
DFT (~k)|, scaled by

weighting factor wfit depending on target bandstructure and sum over all
wfit ·∆E to obtaining single parameter, showing overall quality of the �t.

7. We sample over large space of such random SK parameters (like in Monte
Carlo integrals evaluation techniques) and choose the best �t respecting
majority orbital contributions at Γ, K and Q point in VB, CB and CB+1
bands.

8. We repeat steps (4-7), choosing smaller (usually by 20% of the initial
value) interval for extremal values, starting from best �t from previous
iteration.

Usually in our procedure we �rst �nd model that best describes all bands, then
we optimize for best VB, CB and CB+1 bands and then we perform further
optimization focusing on purpose for which TB model will be used, e.g. for
excitonic calculation we optimize model to reproduce at best possible way tran-
sition energies between VB and CB. All procedures are repeated 10 times, with
usual space of 109 independent parameter choices and parameters spread start-
ing from 2 eV and lowered by 0.4 eV after each 109 subspace search. We note
that we tested simple linear sweep of 10 dimensional parameter space and results
were signi�cantly worse. It is also possible to code and test genetic algorithm
or deep neural network to perform this optimization, however we leave perfor-
mance analysis of such di�erent methods for future work. We note also that such
"Monte Carlo �tting" procedure is extremely easily parallelizable over di�erent
cores and nodes on high performance computing (HPC) clusters, which was one
of the rationale for using this method. Parameters for this �t presented in Fig.
2.9 are shown in Table 2.2. We note that �t presented in the left of Fig. 2.9 was
found by assuming equal weights for all k points and all even bands, therefore
it is called "best all bands". Additionally to reproducing well overall energies of
even bands, this parametrization reproduces very well VB. To obtain best tran-
sition energy (right panel of Fig. 2.9), much more complicated procedure was
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Figure 2.9: Left: TB dispersion obtained after optimizing SK parameters to re-
produce all even DFT bands as well as possible. Right: TB dispersion optimized
to reproduce transition energy between VB and CB. We note that the former
reproduces very well VB, while the latter one - CB, especially on K-Γ line.

used, �rst increasing weights for VB and CB (by 20 times) on whole Γ-M-K-Γ
line and then in subsequent sweeps weights around K point in VB and CB and
Q point in CB were further increased (100 times with respect to their initial
values). Due to those weighting procedure, it is not surprising that both VB
and CB along K-Γ line are reproduced very well, while e.g. on Γ-M-K line TB
energies deviate from target DFT values. We note that in general choices of SK
parameters are not unique, which is main defect of the tight-binding method.
Those parametrization are also not constructed and tested to tackle substitu-
tion e�ects, e.g. simulating alloys like M1−xWxS1−ySey. On the other hand,
when SK parameters are found, they allow for realistic simulations of many
physical phenomena, otherwise impossible to tackle using DFT based methods,
e.g study of multi-million nanostructure systems or converged simulations of
excitonic spectrum.

2.2.4 Spin-orbit coupling

As discussed previously, an important aspect of MX2 TMD's materials is rela-
tivistic spin-orbit interaction. DFT calculations suggest, that spin-orbit splitting
in conduction band is always smaller than in valence band in all MX2 family.
Exact values of this splitting are, however, highly sensitive to material choice,
ranging from 3 to 52 meV at minimum of conduction bands and between 148
and 484 meV in valence bands. Speci�cally, for MoS2 we obtained 3 meV in CB
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parameter best all bands best ∆CB−V B
Em

d
=0,±2 0.07 -0.03

Emp=±1 -1.85 -3.36
Emp=0 -3.58 -4.78
Vdpσ 2.38 -3.39
Vdpπ -0.93 1.10
Vddσ -0.95 -1.10
Vddπ 0.75 0.76
Vddδ 0.14 0.27
Vppσ 0.60 1.19
Vppπ -0.15 -0.83

Table 2.2: Slater-Koster parameters �tted to DFT MoS2 bandstructure tailored
for various problems. Structural parameters are taken as d‖ = 1.8393 Å and
d⊥ = 1.5622 Å. All values in table are given in eV.

and 148 meV in VB splitting, as shown in Fig. 2.6 and Fig. 2.7.

To include spin - orbit coupling in our tight-binding model, we analyze matrix
elements of the following operator

~L · ~S =
1

2
(L+S− + L−S+) + LzSz. (2.19)

Using relations Lz|L,m〉 = m|L,m〉 and

L±|L,m〉 =
√
L(L+ 1)−m(m± 1)|L,m± 1〉 (2.20)

we obtain, e.g. for �rst diagonal element of spinfull Hamiltonian,

〈dmd=−2|λM ~L · ~S|dmd=−2〉 = −2 · 1

2
· λM . (2.21)

It turns out that only non-zero spin-orbit operator matrix elements are diagonal
in our basis and read for spin up (σ = +1)

ĤSOC = diag
(
−λM , 0, λM ,−

1

2
λX2 , 0,

1

2
λX2

)
. (2.22)

Full Hamiltonian with SOC can be written therefore as:

H
(
~k
)

=

[
HMo−Mo HMo−S2

H†Mo−S2
HS2−S2

]
⊗
[
1 0

0 1

]
+

[
HSO(σ = 1) 0

0 HSO(σ = −1)

]
(2.23)

where spin-dependent matrix is given by

HSO(σ) =



−σ · λMo 0 0 0 0 0

0 0 0 0 0

σ · λMo 0 0 0

−σ · λS22 0 0

0 0

σ · λS22


. (2.24)
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Parameters λMo and λS2
(λM and λX2

in general) have to be chosen such as
to reproduce splitting of bands. This choice, however, generally changes dis-
persion of bands due to modi�cation of diagonal parts of Hamiltonian and in
principle requires additional �tting. We checked that, e.g. for MoS2, setting
λMo = 0.148/2 eV and λS2

= 0.03/2 reproduces correct splittings in VB (0.148
eV) and CB (0.003 eV). We note that order of magnitude larger value of λS2

stems from di�erent contribution of mp 6= 0 orbitals to CB (order of 20%). To
avoid di�cult re-�tting of our SOC results optimizing VB-CB transition, one
can for example �t VB+SOC and CB+SOC separately, keeping λM and λX2

parameters as above. Result of such procedure compared to DFT + SOC band-
structure are shown in Fig. 2.10. One can see that this reproduces dispersion
and spin splitting correctly, however it a�ects negatively either band gap for CB
�t and second minimum dispersion at Q point for VB �t. Parameters for best
VB and CB with SOC for MoS2 are presented in Appendix 6.5.

Figure 2.10: Best �t for SOC Hamiltonian for MoS2 performed separately for
CB and VB.

To understand better how SOC a�ects band structure across BZ, let us �rst
plot spin-split bands along (+K)-Γ-(-K) direction, as shown in Fig. 2.11 (a).
One can notice, that our choice of parameters reproduces well spin splitting in
VB and CB at K points and our model catches spin inversion between +K and
-K points. Interestingly, general feature of whole MX2 family is spin inversion
of bands in CB close to the K point, taking place between K and Q points.
This feature is better visible when lowest spin-split band is shown across whole
BZ, as shown in Fig. 2.11 (b). For example of MoS2 at the +K point, bottom
of CB has spin orientation same as top of VB. However, region of BZ where
this property holds is very small (red region around +K in Fig. 2.11 (b) ) and
quickly other spin becomes lower. This situation changes again approximately
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half-way between K and Q point, around which spin is again oriented in the
same way as at +K point in VB. Interestingly, in both Mo and W based TMD's
spin at Q point is always oriented the same way as in VB at K point, irre-
spective of spin ordering change in W based materials in CB at K point with
respect to Mo based TMD's. This property might have interesting implications
on spin-selective charging of quantum dots con�ning electron states from CB, as
discussed later in thesis. Same spin orientation between VB at K and Q at CB
means also, that all momentum-indirect excitons with momentum |Q−K| will
have spin "bright" con�guration and when activated e.g. by phonons, should
be optically detectable, in contrast to spin-forbidden lowest excitons with small
momentum around K-points in tungsten-based TMD's.

Figure 2.11: (a) Band structure along (+K)-Γ-(-K) line with SOC, obtained
using parametrization dubbed "best ∆CB−V B" and parameters λMo = 0.148/2

eV and λS2
= 0.03/2. (b) Spin texture of CB, showing spin orientation of lowest

CB spin-split band. (c) Corresponding VB spin texture.

2.2.5 Massive Dirac fermion and parabolic e�ective mod-

els

In the next step we discuss the low energy Hamiltonian around K-point. We
begin with noticing, that at K point top of the VB is build almost solely from
md = +2 orbital (with small admixture of mp = +1 orbital), while bottom of
the CB is build from combination of md = 0 and mp = −1 orbitals. However,
assuming low-energy basis as md = 0 and md = +2 and expanding g0 and g2
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functions around K point (~k = ~K + δ~k) as

g0 = −3 +
9

4
q2, g2 = −i9

2
q− +

9

8
q2
+, (2.25)

where qx(y) = δkx(y) · d‖, q2 = q2
x + q2

y and q± = qx ± iqy, one can immediately
end up with massive Dirac fermion (mDF) Hamiltonian with correction called
"trigonal warping474":

Heff = HDirac +Hmass +Hwarp.

HDirac =

(
0 at(−iqx − qy)

at(iqx − qy) 0

)
,

Hmass =

(
∆
2 + αq2 0

0 −∆
2 + βq2

)
,

Hwarp. = γ

(
0 q2

+

q2
− 0

)
.

(2.26)

We note that there is a relation between parameters ∆, a, t, α, β, γ to Ed,W1,W2,W3,
however to predict these values reliably one has to include coupling to other or-
bitals. This can be done by using Löwdin perturbation theory,462,463 however
we take alternative route. We note only that this procedure leads to further
correction

Hη =
η

2
q2

(
0 q+

q− 0

)
, (2.27)

which is already in third power of expansion of wavevector around K point pa-
rameter qx(y). To �t model parameters we choose to take another route and sim-
ply treat them as variational and �t their values to our DFT-based tight-binding
model to reproduce VB and CB close to the K point. Best parametrization for
dispersion including up to 1/4 distance between K and Q point we found is
∆ = 1.6850 eV, a = 3.193 Å,t = 1.411 eV, α = 0.8341 eV·Å2, β = 0.8066 eV·Å2,
γ = −0.0354 eV·Å2, η = −0.0833 eV·Å3. As a further simpli�cation, we can
tune parameters to keep only massive Dirac fermion model Hamiltonian:

HmDF =

(
∆
2 at(−iqx − qy)

at(iqx − qy) −∆
2

)
, (2.28)

for which best �t is obtained for ∆ = 1.6848 eV, a = 3.193 Å, t = 1.4677

eV. We note that complicated model described by Eq. 2.26 and Eq. 2.27 and
simple mDF model de�ned by Eq. 2.28 give very similar results of dispersion
and when applied e.g. to excitonic calculations there is no qualitative and very
little quantitative di�erence, therefore in the rest of the thesis we will use only
simpli�ed mDF model without introducing further corrections. We note that
mDF can be even further reduced to parabolic (e�ective mass) model. This can
be done noting, that eigenergies of mDF are:

E = ±
√

∆2

4
+ a2t2q2 = ±∆

2

√√√√√1 +
4a2t2

∆2
q2︸ ︷︷ ︸

ε

≈︸︷︷︸
ε<<1

= ± ∆

2

(
1 +

1

2
ε− 1

8
ε2 + ...

)
(2.29)
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Keeping only �rst order of ε we end up with

E = ±
(

∆

2
+
h̄2q2

2m∗

)
. (2.30)

E�ective electron mass is given m∗ = ∆h̄2

2a2t2 . We note that choice of parameters
∆, t,m∗ depends heavily on how large portion of BZ we want to �t as closely
as possible. One can note also, that top of VB and bottom of CB is described
better if di�erent e�ective masses of electrons (me) and holes (mh) are taken.
For MoS2, when using parabolic model we take me = 0.54m0 and mh = 0.44m0.
For other MX2 materials best e�ective mass parameters can be found easily in
literature.421

Figure 2.12: Comparison between dispersion models along K-Γ line. DFT dis-
persion is denoted by black circles, TB - by blue rectangles, massive Dirac
fermion by green diamonds and parabolic (e�ective mass) model by red trian-
gles. Corresponding connecting lines are shown as a guide to the eye.

As a summary, in Fig. 2.12 we present ab initio result and di�erent discussed
low energy models of VB and CB: tight-binding optimized for VB and CB sepa-
rately, massive Dirac fermion model (without quadratic, trigonal wrapping and
"η"corrections) and parabolic model. One can observe, that all of them describes
well neighborhood of K point, however only using TB model it is possible to
obtain second minimum at Q point in CB and correct second maximum of VB
at Γ point. Approximately 10% of K-Γ line from K point is described properly
by both mDF and parabolic models, mDF model being better for CB descrip-
tion. We note also, that both mDF and parabolic models can be extended to
include spin, however in both cases it is necessary to �nd di�erent parametriza-
tion for two spin species (e.g two e�ective electron and hole masses and two
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gap parameters ∆ for parabolic model). All those parametrization are available
in literature421 for all MX2 crystals, however in the rest of the thesis, when
discussing spin physics, only TB model will be utilized.

2.3 Analysis of single-particle bandstructure of

MX2

2.3.1 Mechanism of band-gap opening

At �rst, let us discuss band gap opening process at K - point, focusing on
MoS2 as a representative of MX2 family. As identi�ed previously, we know that
only non-zero matrix elements at K point are those proportional to function
f0

(
~k
)
. Assuming Mo d- orbital energies at K point as Emd=±2 = Emd=0 = 0

(reference energy) and Emp=±1 = Emp=0 ≈ −3.5 eV (rough estimate based
on energy of �rst band below valence one with majority contribution from p -
orbitals), we �t parameters Vdpσ, Vdpπ to obtain as good band gap at K-point
as possible, comparing against DFT calculations. Then we multiply all non-zero
matrix elements by some parameter 't' and we check what happens when we
slowly turn on the interaction between p and d orbitals, as shown in Fig. 2.13
(a). As one can notice, interaction between d- and p-orbitals lifts the degeneracy

Figure 2.13: (a) Orbital - resolved positions of bands at K-point with respect
to d-p orbitals coupling strength t. For all t values bottom of the valence band
is set to 0. (b) Best �t for band structure obtained using nearest-neighbor tight-
binding model along Γ - M - K - Γ line. (c) Comparison between DFT (white
dots) and TB (black dots) dispersions near K- point along K - Γ line. Figure
reproduced from Ref. 1.

of three d- orbitals. At K - point, when interaction is turned on, the band gap
betweenmd = +2 andmd = 0 opens. We conclude, therefore, that major process
of band gap creation in MX2 materials stems from d- orbitals interactions with
p-orbitals.

Despite correct description of band gap opening process, we �nd that NN TB
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model is not su�cient to describe correctly band structure around Fermi level.
As one can see in Fig. 2.13 (b), even though band gap is opened at K - point,
due to change of the orbital symmetry character between K and Γ points (major
contribution of md = 0 at K in CB changes to major contribution to VB at Γ),
no matter what parameters we choose, there is always a crossing of the bands.
This crossing creates analog of "Dirac" cone somewhere in the BZ, see Fig. 2.13
(b). Due to this e�ect we were also not able to �nd reasonable approximation
for e�ective mass around K - point in NN TB model, as shown in Fig. 2.13 (c).

As shown e.g. in Fig. 2.9 we need next-NN Hamiltonian to correctly capture
band gap opening in whole BZ and dispersion around K, Q and Γ points in
both conduction and valence bands. Comparing results of �rst and second NN
TB models, we see that gap opening at K can be understood as d- and p- orbitals
interaction, however it is crucial to add to TB model second nearest neighbors
metal - metal orbitals interactions (d-d interaction) described by Eq. 2.15, to
open band gap across whole d-orbital group. We note that not only dispersion of
TB model reproduces very well result obtained using ab initio, but also orbital
compositions trends are well resolved. For example, our tight-binding model
captures correctly that majority of orbital composition of bands at +K / -K
points in valence band comes from md = +2/−2 orbitals, as represented by red
circles in Fig. 2.14. Also, major contribution to conduction band at ±K points
is coming from md = 0 orbital (black circles).

Figure 2.14: Evolution of orbital compositions from K to Γ point in MoS2. Size
of circle encodes value of orbital contribution, while color - md quantum number
of M d-orbital. Figure reproduced from Ref. 1.
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Figure 2.15: (a) Direct transition energy between VB and CB for both DFT
and TB optimized to reproduce transition energy. (b) Joint optical density of
states, showing pronounced peak for band nesting transition energy, resulting
from existence of Q points.

2.3.2 Q-points and band nesting

Due to the exchange of orbital symmetries between valence and conduction
bands, one can expect that second minimum in CB may occur. This minimum, at
so-called Q - point (however usual naming convention for points inside BZ should
be Greek, therefore names Σ or Λ are also in use), due to lack of the second
maximum in valence band, creates peculiar situation, when both conduction
and valence bands are parallel in large portion of the Brillouin zone, see Fig.
2.15 (a). This phenomenon, which is reminiscent of parallel electron and hole
pockets is superconductors (however not on the same Fermi level), is called band
nesting.747 It is responsible for record high absorption by TMD's monolayers.
For uncorrelated electron-hole transition we identify peak energy of joint optical
density of states at energetic window between 2.58 eV and 2.75 eV for MoS2, see
Fig. 2.15 (a,b), red dashed lines. We note that other contribution to this peak
comes from portion of BZ between Γ and M line. We checked, that when Q
points are "turned o�" and not included in joint optical density of states, before
mentioned peak drops signi�cantly, establishing that it is mainly related to
transitions from neighborhood of Q points. We note again, that second minimum
at Q point becomes true minimum for n > 1 layers of MX2 family, which are
indirect gap semiconductors with gaps between Γ and Q points.

2.3.3 Theory of Landé and valley Zeeman e�ect

Understanding response of material to applied magnetic �eld can greatly en-
hance our knowledge of electronic structure. In the following section we study
how electrons in center of the ±K valleys react to external magnetic �eld ~B.
We assume that �eld is always perpendicular to the sample, ~B = (0, 0, Bz). In
MX2 materials there are 3 contributions to overall Zeeman splitting of a given
valley, summarized in Fig. 2.16. They are:
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Figure 2.16: Di�erent contributions to +K and -K valleys response to magnetic
�elds. Blue and red arrows show bare electron Zeeman contribution in magnetic
�eld ~B = (0, 0, Bz), green - atomic orbital Landé contribution and black ones -
valley Zeeman contribution.

• Bare electron Zeeman e�ect, related to intrinsic electrons spin and de-
scribed by Hamiltonian H1 = g0µB ~B · ~s

• Orbital Landé splitting, caused by electron orbital rotation, proportional
to azimuthal quantum number m from which electron at given k-space
region is build, described by Hamiltonian H2 = µB ~B · ~L

• Valley Zeeman splitting, caused by wavepacket rotation and corresponding
wavepacket orbital magnetic moment related to Berry's curvature. This
e�ect is described by Hamiltonian H3 = µ̃V ~B · ~Lwp and corresponding
energy shift is given by ∆V Z = ~mwp · ~B.

Now we aim to calculate energy shifts caused by three e�ects described above.
First, the bare spin Zeeman splitting gives standard ∆E1 = 2szµB ≈ ±B ·5.79 ·
10−5 eV/T, so even in 100 Tesla it gives shifts of the order of meV.

Calculation of the second contribution is more di�cult due to usually compli-
cated orbital structure of electron Bloch wavefunctions in crystal. Our goal is
to calculate expectation value of H2 in form

∆En(k) = 〈Ψn (k) |L̂z/h̄|Ψn (k)〉µBBz, (2.31)

where n is band (CB or VB). Details of such matrix element evaluation in our
TB model are presented in Appendix 6.6. Final matrix element of L̂z operator,
for example in CB at K point, is given by

〈ΨCB

(
~K
)
|Lz/h̄|ΨCB

(
~K
)
〉 = (−1)

∣∣νCB4 (K)
∣∣2 , (2.32)
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where νni (~k) is i-th eigenvector component of TB spinor of n-th band at given
~k - point. Analogous calculation for valence band at K point yields

〈ΨV B

(
~K
)
|Lz/h̄|ΨV B

(
~K
)
〉 = 2 ·

∣∣νV B3 (K)
∣∣2 + 1 ·

∣∣νV B6 (K).
∣∣2 (2.33)

Matrix elements at −K are obtained simply by changing signs of allm, resulting
in opposite matrix elements than in +K valley. Interestingly, we see that split-
ting due to chalcogen dimers a�ects orbital Zeeman splitting (ν4 and ν6 in Eq.
(2.32) and Eq. (2.33)), entering with opposite signs to VB and CB, "conspiring"
to give only metal (md = ±2) contribution, as usually described in experimental
papers.178 Small deviation from total g-factor 4 for valley Zeeman splitting can
be understood then as sensitive probe of imbalance between chalcogen dimer
contributions to CB and VB. Interestingly, in MoS2 experimental exciton g-
factors may deviate strongly from value 4, which was proposed to be related to
many-body e�ects, possibly interactions of 1s bright excitonic state with several
dark states.180

Third contribution to total Zeeman shift in magnetic �eld stems from Bloch
electron wave-packet (wp) rotation. This orbital magnetic moment ~mwp can be
analytically derived for massive Dirac fermion model for ~B = (0, 0, Bz) and
yields748

∆V Z = ~mwp(q) · ~B = τz
2ea2∆t2Bz

2h̄ (∆2 + 4q2a2t2)
=︸︷︷︸
q=0

a2t2

∆

eBz
h̄
. (2.34)

Interestingly, exactly the same result for q = 0 can be obtained di�erently,
analyzing Landau levels constructed out of massive Dirac fermions. Standard
procedure1,567,749 introducing ladder operators and transforming massive Dirac
fermion Hamiltonian de�ned in Eq. 2.28 to harmonic oscillator problem yields
di�erence between bottom Landau levels in respective valleys in CB (zeroth
Landau level in -K valley and �rst Landau level in +K valley) given by:

∆V Z =
∆

2

(√
2at

l0∆

)2

=
a2t2

∆

eBz
h̄

(2.35)

where magnetic length l0 is given by l0 =
√
h̄/(eBz).

We note that the orbital magnetic moment can be in principle calculated for
every k-point in BZ within TB model for n-th band using formula748

~mwp(~k) = i
eh̄

2m2

∑
i6=n

〈un,k|p̂|ui,k〉 × 〈ui,k|p̂|un,k〉
En(~k)− Ei(~k)

, (2.36)

where p̂ are momentum operators, |un,k〉 - Bloch wavefunctions constructed
out of TB coe�cients and En(~k) - TB eigenenergies. Interestingly, interplay
of orbital and valley Zeeman splittings may be an additional way of tuning
respective K and Q valleys positions minima in CB, especially in QD systems.
This e�ects is left, however, for a future study.
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Chapter 3

Optical properties of MX2:

exciton theory

In the following Chapter properties of excitons, complexes dominating optical re-
sponse of 2D semiconductors are studied. First we derive an equation describing
correlated bound electron-hole state, analogous to Bethe-Salpeter theory. Then,
a lot of attention is devoted to realistic description of matrix elements describing
interactions between excited carriers. Next we present ladder of approximations
starting from simplest, analytically solvable excitonic model, �nishing with full
tight-binding theory of exciton with model, but realistic theory of screening.
Particularly, role of band nesting and topology of wavefunctions on excitonic
spectrum is uncovered. Then, we use knowledge of excitonic �ne structure to
rationalize novel type of �ne structure of trions in MoS2 when compared with
other TMD's.

3.1 Non-interacting optical excitations in hexag-

onal semiconductors

The simplest picture of light absorption by semiconducting material can be
understood in terms of transitions of carriers from valence to conduction band
due to photon excitation with energy Eexc., changing angular momentum by
±1 when circularly polarized light is used. In MX2 semiconductors situation
get's more complicated, because dipole transitions between d orbitals (md =

±2 in VB and md = 0 in CB) and negligible p-d transitions cannot explain
that circularly polarized light excites carriers within one valley. Solution to this
problem comes from realization that velocity matrix elements inside transition
matrix elements in general have two contributions:750 dipole transitions between
localized orbitals and terms related to electron hopping between lattice sites.
This hopping contribution set's phase of velocity matrix element between VB
and CB Bloch wavefunctions and de�nes optical selection rules, generally not
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only in MX2, but in all gapped" chiral" fermion systems, e.g. graphene multi-
layers.630,631

Figure 3.1: (a) Choice of +K valley on whole BZ. (b) Construction of valley
around single K-point. Figure reproduced from Ref. 5.

Because it is possible to selectively excite carriers from band edge of one val-
ley (e.g. +K), in theoretical investigations it is useful to think about two-non
equivalent parts of the hexagonal Brillouin zone (BZ). Unique association of k-
points to belong to one or the other valley have to be done as shown in Fig. 3.1.
Starting from cutting "wedges" around 3 equivalent (related to each other by
reciprocal lattice vector G translations) K - points, as shown in Fig. 3.1 (a), one
can move respective wedges to one neighborhood of K-point, creating triangle
around it as in Fig. 3.1 (b). We note that similarly constructed triangle for -K
valley has to be rotated by C3 symmetry, and both triangles for +K and -K
valley put next to each other create rhomboidal BZ equivalent to full hexagonal
BZ.

In next step let us discuss energy of transitions inside one valley. As shown
in Fig. 3.2 (a) along K-Q-Γ line, TB model (optimized to reproduce Kohn-
Sham transition energies) shows steep rise of transition energy to approximately
half - way between K and Q points. In this region, ∆E is described quite well
by both parabolic and massive Dirac fermion models. However, around Q -
point, density of states becomes �at, which results in large peak in joint optical
density of states, as discussed and depicted in Fig. 2.15. This means, that in
terms of mean energy of transition across +K valley TB model has the lowest,
and parabolic model - the highest value. Similar e�ect might be "on average"
obtained by increasing e�ective mass of bands when switching from parabolic to
mDF to TB approximations. This picture will help later to rationalize increased
binding energy of excitons for TB model compared with parabolic one under
approximation of the same form of electron-hole interaction.
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Figure 3.2: (a) Comparison of three models of energy transitions (∆E = ECB−
EV B) set with respect to band gap ∆GAP at K point. (b) The same transition
energy (without subtraction of ∆GAP ) for all points in +K valley in BZ. Figure
reproduced from Ref. 5.

3.2 E�ect of electron-electron interactions on op-

tical properties

"Free particle" transitions, described in previous Section, are well known to give
incorrect optical band gaps in materials in which interactions are strong. As dis-
cussed in introduction, those energies have to be �rst corrected by electron and
hole self-energies, and then electron - hole interaction has be included. In simple
hydrogen-like picture, positive hole charge interacts by Coulomb potential with
negative electron charge, creating series of ground and excited bound states, as
shown schematically in Fig. 3.3 (a).

We begin description of our theory from de�ning the ground state. From now
on we assume that we have only one valence and one conduction band. Next,
to construct the ground state we �ll all states in the valence band, as shown in
Fig. 3.3 (b), as

|GS〉 =
∑

c†k|0〉, (3.1)

where |0〉 is vacuum state. Let's note that ground state contains some inter-
actions on the Kohn-Sham level, because tight-binding theory used is con-
structed to reproduce DFT band structures. These interactions are equivalent
conceptually to Hartree-Fock theory corrections, both a�ecting single-particle
energies. Next step is construction of single excitation shown in Fig. 3.3(b) as
c†c,k+QCM ,σ

cv,k,σ|GS〉, where cv,k,σ annihilates electron from valence band state
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Figure 3.3: (a) Single electron - single hole picture (exciton in e�ective mass
approximation) in which interaction creates spectrum of bound states. (b) Exact
picture where "hole" is created by exciting electron from �lled ground state
in VB. Exciton is then constructed as coherent superposition of all possible
excitations for a given center-of-mass momentum ~QCM interacting via Coulomb
interaction.

with wavevector ~k and spin σ and c†c,k+QCM ,σ
creates electron in conduction

band with momentum k + QCM and the same spin σ as electron annihilated
from valence band. QCM is center-of-mass momentum of electron-hole pair.

In the next step exciton state is formed as linear combination of excitations with
coe�cients AQCMn being complex electron-hole amplitudes

|X,Q
CM
〉 =

1stBZ∑
k

A
Q
CM

n

(
~k
)
c†c,k+Q

CM
,σcv,k,σ|GS〉 (3.2)

Because we are interested in optically excited exciton states and we do not con-
sider phonon-assisted processes, we can assume that Q

CM
is zero and drop this

index from now on. Exciton states can be calculated using standard eigenvalue
problem

ĤX |X〉n = En|X〉n (3.3)

where interacting excitonic Hamiltonian ĤX is given in notation hiding both
band index b = v = V B or b = c = CB, wavevector ~k and spin σ in single
index, for example |i〉 = |b,~k, σ〉 as

ĤX =
∑
i

εic
†
i ci︸ ︷︷ ︸

Ĥ
(1)
X

+
1

2

∑
ijkl

〈i |j |V | k| l〉 c†i c
†
jckcl︸ ︷︷ ︸

Ĥ
(2)
X

(3.4)

In the next step we face a problem of calculating matrix elements of this Hamil-
tonian. As a �rst step let's consider single particle part Ĥ(1)

X . For two arbi-
trary excitonic states |X1〉 = c†f1ci1 |GS〉, |X2〉 = c†f2ci2 |GS〉, where i1 = (k, v),
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f1 = (k, c), i2 = (k′, v), f2 = k′, c, we have for single particle part of the Hamil-
tonian

〈X2|Ĥ1
X |X1〉 =

Nall∑
m=1

εm〈X2|c†mcm|X1〉 =

Nall∑
i=m

εm〈GS|c†i2cf2c
†
mcmc

†
f1
ci1 |GS〉

(3.5)
Detailed steps showing how Wick theorem is used to reduce six component
operators are presented in Appendix 6.8 and the result is given by

〈X2|Ĥ(1)
X |X1〉 = δ(i1, i2)δ(f1, f2)

[
εf1 − εi1 +

Nocc.∑
m=1

εm

]
, (3.6)

where last sum inside bracket over all occupied states is a non-interacting con-
tribution to ground state energy, that can be subtracted from diagonal energy
in B.-S. matrix.

Analysis of interaction part Ĥ2
X is more demanding, because now 8-operator

product have to be reduced. Details of this process are again moved to Appendix
6.8. The �nal result gives several terms that can be arranged as

〈X2|Ĥ(2)
X |X1〉 = HV−GS +Hh−GS +He−GS +He−h, (3.7)

Part of full Hamiltonian denoted as HV−GS describes interactions renormalizing
energy of the ground state

HV−GS =
1

2
δ(i1, i2)δ(f1, f2)

Nocc.∑
m1,m2=1

[〈m1 |m2 |V |m2|m1〉 − δσ,σ′ 〈m1 |m2 |V |m1|m2〉] .

(3.8)
Term Hh−GS is missing electron ("hole") interaction with all �lled states (hole
self-energy)

Hh−GS = −δ(f1, f2)

Nocc.∑
m1=1

[〈i1 |m1 |V |m1| i2〉 − δσ,σ′ 〈m1 |i1 |V |m1| i2〉] , (3.9)

and term He−GS is analogous electron interaction with all �lled states (electron
self-energy)

Hh−GS = δ(i1, i2)

Nocc.∑
m1=1

[〈m1 |f2 |V | f1|m1〉 − δσ,σ′ 〈m1 |f2 |V |m1| f1〉] . (3.10)

The most interesting part for us is electron - hole interaction He−h given by

He−h = −〈i1 |f2 |V | f1| i2〉+ 〈f2 |i1 |V | f1| i2〉 . (3.11)

Coming back to notation using wave vectors ~k and ~k′, neglecting ground state
energy correction due to interactions and incorporating electron and hole self-
energies into dispersion energies εc,k and εv,k we obtain Bethe-Salpeter equation
for exciton (center-of-mass momentum QCM = 0)

(εc,k − εv,k)An

(
~k
)

+
BZ∑
k′

−〈v,~k′ ∣∣∣c,~k |V | c,~k′∣∣∣ v,~k〉
+
〈
v,~k′

∣∣∣c,~k |V | v,~k∣∣∣ c,~k′〉
An (~k′) = EnAn

(
~k
)

(3.12)

67



Figure 3.4: Graphical representation of two types of interaction between electron
and hole: (a) direct process (b) exchange process.

In this equation summation over ~k′ states is understood as over all vectors in
�rst BZ, the same as number of atoms in the crystal. First let us identify type
of matrix elements inside summation over ~k′. Note that they are written in
electron-only language. As shown in Fig. 3.4, �rst element (with minus sign)
describes process in which electron in conduction band in state ~k and electron
in valence band in state ~k′ scatters via Coulomb interaction to electron in state
~k′ in conduction band and electron in state ~k in valence band. This description
is equivalent to electron-hole pair scattering from state ~k to ~k′. Second process
in Eq. (3.12) describes electrons starting as previously in ~k state in conduction
band and ~k′ state in valence band and scattering to same ~k and ~k′, but changing
band indices to valence and conduction, respectively. We identify �rst process
as attractive direct electron-hole interaction, and second process as repulsive
exchange electron-hole interaction.

Interestingly, when form of Eq. (3.12) is compared with the same equation
for electron-hole binding energy511 derived using two-particle Green's function
method, there is a di�erence in exchange interaction screening. Question if ex-
change interaction should be screened was analyzed already in physics of quan-
tum dots, for which better comparison with experiments was achieved when
exchange was screened. In our theory we obtain same screening for both direct
and exchange, however we will study further what happens if they are treated
di�erently.
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3.3 Coulomb matrix elements

We begin this Chapter with general de�nition of an arbitrary Coulomb matrix
element〈

n1,~k1

∣∣∣n2,~k2

∣∣∣V ∣∣∣n3,~k3

∣∣∣n4,~k4

〉
=∫∫

R3

d3rd3r′V 3D (~r − ~r) Ψ∗n1

(
~k1, ~r

)
Ψ∗n2

(
~k2, ~r′,

)
Ψn3

(
~k3, ~r′

)
Ψn4

(
~k4, ~r

)
.

(3.13)

The wavefunctions can be written as

Ψn

(
~k, ~r
)

= ei
~k·~run

(
~k, ~r
)
, (3.14)

where Bloch part of the wavfunction is given by

un

(
~k, ~r
)

=
1√
NUC

NUC∑
i=1

2∑
α=1

3∑
µ=1

e−i
~k·(~r−~Ui−~τα)ν(n)

αµ

(
~k
)
ϕαµ

(
~r − ~Ui − ~τα

)
(3.15)

Index i goes over NUC unit cells with positions Ui, α enumerates sublattice and
µ corresponding orbital. Tight-binding model coe�cients ν(n)

αµ are calculated
from Hamiltonian in Eq. 2.14. ~τα speci�es atom (or dimer) position inside unit
cell. Finally we take ϕαµ as localized orbitals written in a form of Slater ζ-type
orbitals:

ϕαµ (~r) = Rn(r)YL,µ(θ, φ) (3.16)

where radial function is approximated as

Rn =
(2ζnLm)n+ 1

2√
(2n)!

rn−1e−ζnLm·r (3.17)

where ζnLm Slater parameters are taken for isolated atom model.744,745 Spher-
ical harmonics are given by standard expression

YLµ =

√
2L+ 1

4π

(L−m)!

(L+m)!
PmL (cos θ)eimφ (3.18)

where PmL are associated Legendre polynomials with Condon-Shortley phase
(−1)m inside them. For α = 1 we have Mo atom with L = 2, µ ∈ {−2, 0,+2}
and for α = 2 we have S2 top and bottom atoms with L = 1, µ ∈ {−1, 0,+1}.

3.3.1 Electron-hole direct matrix elements

For concreteness, let us �rst analyze direct electron - hole Coulomb matrix
elements. Paying attention to index arrangement we have〈

v,~k′
∣∣∣c,~k∣∣∣V ∣∣∣c, ~k′∣∣∣ v,~k〉 =∫∫

R3

d3rd3r′
[
V 3D

(
~r 3D − ~r 3D′

)
Ψ∗v

(
~k′, ~r, z

)
Ψ∗c

(
~k, ~r′, z′

)
× ...

...×Ψc

(
~k′, ~r′, z′

)
Ψv

(
~k, ~r, z

)]
.

(3.19)
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where V 3D is the bare electron-electron interaction, which screening will be
discussed later. Note that in Eq. (3.19) ~r3D vector is explicitly separated into two
dimensional vector ~r (in which crystal is periodic) and out-of-plane coordinate
z (d3r = d2rdz). Substituting the Bloch form of the wavefunctions we get after
re-grouping∫∫

R3

d3rd3r′
[
ei(

~k−~k′)·(~r−~r′)V 3D
(
~r 3D − ~r 3D′

)
u∗v

(
~k′, ~r, z

)
uv

(
~k, ~r, z

)
× ...

...× u∗c
(
~k, ~r′, z′

)
uc

(
~k′, ~r′, z′

)]
.

(3.20)

In next step we utilize the property, that because electrons move in 2D crystal,
their coordinates in that plane (we set it to xy) can be analyzed in reciprocal
space. Two dimensional Fourier transform V 2D(q) = e2

4πε0
2π
q (in SI) of three

dimensional interaction gives

V 3D
(
~r 3D − ~r 3D′

)
=

1

(2π)
2

∫∫ ∞
−∞

d2qV 2D(q)e−|z−z
′|·|~q|ei~q·(~r−

~r′). (3.21)

where z, z′ coordinates are not transformed because there is no periodicity in
z-th direction. Similarly to interaction, one can note that products of Bloch
wavefunctions depending on the same coordinates (~r3D or ~r′3D) can also be
written in terms of their 2D Fourier series

u∗v

(
~k′, ~r, z

)
uv

(
~k, ~r, z

)
≡ ρ~k′~kvv (~r, z) =

∑
~G

ei
~G·~rρ̃

~k′~k
vv

(
~G, z

)
. (3.22)

Fourier coe�cients of such pairs of Bloch functions, called in literature either
"pair densities" or "co-densities", are given by

ρ̃
~k′~k
vv

(
~G, z

)
=

1

S

∫∫
R2

d2re−i
~G·~ru∗v

(
~k′, ~r, z

)
uv

(
~k, ~r, z

)
, (3.23)

where S is the crystal area. Those pair densities have to be calculated numeri-
cally due to a complicated structure of our tight-binding Bloch wavefunctions.
In principle, integration should be performed over R2 plane, however we do it
only inside radius including all atoms inside central unit cell and all �rst neigh-
boring unit cells. We have checked that for larger radii results are not a�ected.
In next step we put all Fourier transforms into one expression ( Eq. (3.20)). This
allows us to integrate out many delta functions, however during this step one
has to be careful and pay attention to changing continuous delta's to discrete
one's δ

(
~G′ + ~G

)
→ S

(2π)2
δ ~G′+~G. Otherwise, there is no cancellation of crystal

area S and results of �nal matrix elements have wrong scaling in limit of an in�-
nite crystal. Final expression for direct matrix element (with coe�cient S/(2π)2

resulting from sum to integral transition) is

V D
(
~k, ~k′

)
=

S

(2π)
2

〈
v,~k′

∣∣∣c,~k |V | c, ~k′∣∣∣ v,~k〉 = γ
∑
~G

FD
(
~k, ~k′, ~G

)
∣∣∣~k′ − ~k − ~G

∣∣∣ , (3.24)
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where γ = e2/
(
8π2ε0

)
and interaction form factor FD is given by:

FD
(
~k, ~k′, ~G

)
=

∫
dz

∫
dz′ρ

~k′~k
vv

(
~G, z

)
ρ
~k~k′
cc

(
−~G, z′

)
e−|z−z

′|·|~k′−~k−~G|. (3.25)

Pair densities can be evaluated numerically for every coordinate z by using ex-
plicit form of the Bloch wavefunctions, constructed using localized Slater orbitals
ϕ as described before, as

ρ
~k′~k
vv

(
~G, z

)
=

1

NUC

2∑
α,β=1

3∑
µ,ν=1

[
vVBαµ

(
~k′
)]∗

vVBβν

(
~k
)
×

NUC∑
i,j=1

exp
[
−i~k′ ·

(
~Ui + ~τα

)
+ i~k ·

(
~Uj + ~τβ

)]
×

∫∫
R2

d2r

{
e−i(

~G−~k′+~k)·~rϕαµ

(
~r − ~Ui − ~τα, z

)∗
ϕβν

(
~r − ~Uj − ~τβ , z

)}
.

(3.26)

We note that further discussion of details of properties of direct Coulomb in-
teraction, e.g. behavior of pair densities, convergence issues, matrix elements
symmetries, complex phase properties and description of their inter-valley be-
havior is moved to Appendix 6.9.

3.3.2 Electron-hole exchange matrix elements

In next step exchange Coulomb matrix elements are discussed. Expression for
them, derived analogously to Eq. (3.24) is given by

V X
(
~k, ~k′

)
=

S

(2π)
2

〈
v,~k′

∣∣∣c,~k |V | v,~k∣∣∣ c, ~k′〉 = γ
∑
~G6=0

FX
(
~k, ~k′, ~G

)
∣∣∣~G∣∣∣ , (3.27)

with form factors

FX
(
~k, ~k′, ~G

)
=

∫
dz

∫
dz′ρ

~k′ ~k′
vc

(
~G, z

)
ρ
~k~k
cv

(
−~G, z′

)
e−|z−z

′|·|~G|. (3.28)

There are several di�erences between direct and exchange electron-hole interac-
tion. As can be seen from Eq. (3.12) direct interaction comes with negative sing
(electron-hole attraction) and exchange one comes with positive sign (electron-
hole repulsion). Contrary to direct matrix elements, there is no 1/|k−k′| overall
dependence of magnitude of those elements, therefore potentially exchange in-
teraction can be large whenever direct matrix elements are small due to large
|k− k′| distance. We note also, that interaction form factors FD consist of pair
densities diagonal in band indices (ρvv/cc) and o�-diagonal with wave vector
indices (ρkk

′
), while for exchange interaction form factors situation is oppo-

site, i.e. there is o�-diagonal dependence on band indices (ρvc/cv) and diagonal
wavevector dependence (ρkk/kk

′′
). Due to those properties, we found that di-

rect matrix elements are in general complex numbers, while exchange matrix
elements are real within numerical precision. Also, due to dependence only on
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diagonal wavevector, exchange matrix element can be computed much faster
that direct matrix elements. Further comparison of direct and exchange inter-
action is again moved to Appendix 6.9.

At this point we note also that at �rst look there is G = 0 singularity in V X in
Eq. (3.27). This singularity is generally problematic for 3D crystals and di�erent
methods of dealing with it has been discussed in literature.751 However, we note
that for 2D crystal, taking a limit result in zero

lim
~G→0

∫
dz
∫
dz′ρ

~k′ ~k′
vc

(
~G, z

)
ρ
~k~k
cv

(
−~G, z′

)
∣∣∣~G∣∣∣ = 0. (3.29)

Singular term, therefore, does not contribute to sum adding up to total value
of V X and can be excluded from summation over G vectors in Eq. (3.27).

3.3.3 Gauge choice in Coulomb matrix elements

As can be seen from Eq. (3.19) direct matrix elements are in general com-
plex quantities, which phase is determined by numerical routines diagonalizing
tight-binding Hamiltonian de�ned in Eq. (2.14) and therefore is rather random.
One may wonder if Bethe-Salpeter-like equation de�ned in Eq. (3.12) is gauge-
invariant, i.e., it does not depend on gauge choice of wavefunctions, which can
be done arbitrarily for every band and k-point. To prove that eigenvalues of
BSE and modules of exciton wavefunctions do not depend on gauge choice, it
is instructive to analyze BSE eigenvalue problem for 3 k-points and direct in-
teraction only. Because all matrix elements have the following arrangement of
bands 〈v|c|V |c|v〉, we drop it for a moment for clarity and measure energy with
respect to the band gap Ẽ = E −∆gap:∣∣∣∣∣∣

Ẽ −∆E(k1) 〈k2|k1|V |k2|k1〉eiϕ 〈k3|k1|V |k3|k1〉eiϕ
e−iϕ〈k1|k2|V |k1|k2〉 Ẽ −∆E(k2) 〈k3|k2|V |k3|k2〉
e−iϕ〈k1|k3|V |k1|k3〉 〈k2|k3|V |k2|k3〉 Ẽ −∆E(k3)

∣∣∣∣∣∣ = 0 (3.30)

To show how gauge choice a�ects this problem, |v, k1〉 wavefunction has been
multiplied by arbitrary phase exp(iϕ). As known from theory of matrix diago-
nalization, when both row and column (without diagonal element) are multiplied
by phase and conjugated phase, respectively, eigenvalues are not a�ected. We
have checked that for such matrix also absolute values of eigenvectors are not
a�ected. On the other hand, unsurprisingly, phase ϕ a�ects phase of exciton co-
e�cients A de�ned in Eq. (3.2). This arbitrariness of phase choice may in�uence
apparent symmetry of ground excitonic state, as already noted in literature.545

One of the solutions to this problem is studying only observable quantities, like
imaginary part of dielectric function ε2, in which complex exciton amplitudes
are multiplied by velocity operator matrix elements, which are constructed also
from wavefunctions. Keeping track of phase in both should be enough to get
gauge independent answer. On the other hand, one is sometimes interested in
studying excitonic wavefunctions themselves. To obtain ground excitonic state
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Figure 3.5: Schematic picture of dielectric environment of MX2 monolayer.

with 1s symmetry various numerical approaches are used, however their de-
tails are rarely discussed in literature.511,545 In our procedure, we follow idea
introduced by Rohl�ng and Louie,511 in which global phase of tight-binding
wavefunctions is chosen in such way, that the sum of imaginary parts is 0, i.e.∑2
α=1

∑3
µ=1 Imv

(n)
αµ = 0. In next step, we rotate global phase in such a way to

get phase 0 on md = 0 orbital, which means that phase of second TB coe�cient
is set to zero (Im v12 = 0). Second gauge procedure actually breaks �rst prop-
erty, however we found that this procedure is necessary to obtain numerically
excitons in +K and -K valleys, which wavefunctions have the following property
expected from time-reversal symmetry arguments

An(−k) = A∗n(k). (3.31)

3.3.4 Screening of Coulomb interactions

Additional complication in realistic description of Coulomb electron-hole inter-
action stems from screening of interaction by other carriers. As noted early
in studies of graphene,752 electron-electron interaction screening in 2D crystals
behaves di�erently that in 3D crystals. It is, therefore, not enough to choose
some "average" static screening, but more involved model has be used. Simplest
known model that catches major linear dependence of screening in k space was
derived in physics of thin dielectric slabs and is called Rytova - Keldysh (R.-
K.) model.563,564,752 In this theory bare Coulomb matrix elements V D/X are
divided by function

V
D/X
R−K (q) =

V
D/X
bare (q)

[εR-Kr (1 + 2πα |~q|)]
. (3.32)

Counter-intuitively, static-like screening part εr depends not on material itself,
but on surrounding material's dielectric properties εR-Kr = (ε1 + ε3) /2. This
expression comes from theory of dielectric slab with �nite width d surrounded
by two semi-in�nite dielectric with electric permeability ε1, ε3. In such theory
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momentum transfer dependent screening can be derived in form

ε(q) = (ε1 + ε3) /2︸ ︷︷ ︸
εR-Kr

1 +
2ε2

2 −
(
ε2

1 + ε2
3

)
2ε2(ε1 + ε3)

d︸ ︷︷ ︸
2πα

·q

 . (3.33)

In the numerical results for MoS2 discussed in next sections we take for concrete
case of MoS2 (with "e�ective " thickness d = 6.14 Å) on top of bulk SiO2

(ε3 = 4) crystal,143,753 as shown schematically in Fig. 3.5. Next we assume
that from the top crystal is surrounded by vacuum, therefore we take ε3 = 1.
As known from literature,754 more advanced models of screening do not a�ect
signi�cantly exciton spectra. This is related to the property, that R.-K. model
describes well screening from ab initio and only for large k-space distance (when
matrix elements are small due to 1/|k − k′| dependence) there is substantial
di�erence between "correct" and approximated screening model.

We note that for testing purposes and to gain insight we use also static dielectric
constant model εstat.r as simply V

D/X
stat. (q) = V

D/X
bare (q)/εstat.r . Value of εstat.r is

taken as 5.74 to yield 1s A exciton binding energy close to experimental value
(400 meV) when parabolic model of bands is assumed with e�ective electron
and hole masses 0.44 and 0.54 m0, respectively. We point also to the issue
of (already mentioned) screening of exchange interaction, which is absent in
�eld-theoretically derived Bethe-Salpeter equation. Role of screened exchange
interaction and possible higher-order corrections of this approach are left for
future study, because in CI language they naturally have to include coupling to
more-than-single excitation basis (e.g. bi-excitons), which is beyond our current
computational possibilities for excitonic problem in reciprocal space language.

3.3.5 Singularity in Coulomb matrix elements

Just as for exchange Coulomb interaction discussed above, it is easy to under-
stand that diagonal term of direct electron-hole interaction in BSE given by Eq.
(3.12) is singular at k = k′ and G = 0. Renormalization due to this singularity
has to be included in simulations on �nite lattice, otherwise numerical results
(which we have done for parabolic model) give vastly di�erent results when
compared with theoretical predictions. We note that dealing with singularity
is connected with discretization of BZ associated with single valley. Below we
discuss rectangular discretization of the lattice, which will be described better
in next Section. Con�ning our discussion to the case of G=0 for a moment, one
of the methods allowing to integrate out singularity is to note that form factor
FD(k = k′, G = 0) = 1 and make an approximation that inside box centered
around point (kx,ky) exciton wavefunction takes constant value. This approxi-
mation is naturally more and more exact with increasing number of points (and
decreasing area associated with each k point) into which BZ is discretized. This
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allows us to approximate diagonal of BSE interaction kernel as

∫ kx+δk/2

kx−δk/2

∫ ky+δk/2

ky−δk/2
dk′xdk

′
y

An

(
~k′
)

∣∣∣~k − ~k′
∣∣∣ ≈

An

(
~k
)∫ δk/2

−δk/2

∫ δk/2

−δk/2
dk′xdk

′
y

1√
k′2x + k′2y

=

An

(
~k
)[

2 ln

√
2 + 1√
2− 1

]
δk = An

(
~k
)
Vsin.δk.

(3.34)

We note that this result assumes constant, static screening of electron - hole
interaction and in principle should be re-calculated when R.-K. screening model
is used. Also, the G = 0 term is the leading one, however summation over G vec-
tors introduces further corrections into singular term. We checked numerically
that both e�ects introduce contributions that are at least 2 orders of magnitude
smaller than expression given in Eq. (3.34) and are neglected in further stud-
ies. We note that constant Vsin. ≈ 3.5255 is calculated for rectangular lattice
with area of BZ around single point given by (δk)2 and it should be changed
to Vsin. ≈ 3.2325 for rhomboidal lattice with analogous rhombus area given
by
√

3(δk)2/2 under the same approximations as for rectangular discretization
scheme.

3.3.6 Interaction form factor approximation theory

In the last part of this section we build systematic theory of approximation of
direct electron-hole matrix elements. As a �rst step we note that in equation for
matrix elements entering BSE are

V D
(
~k, ~k′

)
= γ

∑
~G

1∣∣∣~k′ − ~k − ~G
∣∣∣ × FD

(
~k, ~k′, ~G

)
. (3.35)

Calculation of interaction form factors FD is a major bottleneck of both ab

initio and TB calculations due to necessity of calculating them for all combi-
nations of k and k' and additional summation over reciprocal lattice vectors G.
Simplest solution is to assume all form factors to be one (their highest possible
value, exact for k=k' and G=0) and note, that highest value entering sum over
G vectors comes from G's minimizing |k − k′ − G| distance. We checked that
this approximation is relatively useful around K point, for which neighborhood
form factor absolute value deviates from one rather slowly. Example of such
"additional" 1/|K − k′| dependence can be observed in Fig. 3.6 (a). In Fig.
3.6 (b) we present why distance between k and k' points should be calculated
with respect to reciprocal lattice vector. Because we are in �rst Brillouin zone,
there are three equivalent K point per valley. However, if we take k point from
neighborhood of one K point and k' from other, naively this distance is large
(of the order of reciprocal lattice vectors G). One the other hand, when points
in hexagonal BZ are transformed to create triangle around one K-point (which
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Figure 3.6: (a) Absolute value of form factor FD(K, k′, G = 0). (b) Construction
of simpli�ed "1‖q − q′|" interaction model. Figure reproduced from Ref. 5.

gives 3 equivalent Γ points in vertices), it is clear that correct way of measuring
distance in reciprocal space is given by |q−q′|, where q vectors are now measured
from nearest K - point. This reasoning resembles well known problem of "Umk-
lapp scattering", known from theory of electron-phonon and phonon-phonon
scattering. Due to 1/|q − q′| dependence we call this approximation "simpli�ed
1/|q − q′| interaction".

Approximation described above allows to reproduce numerically analytical so-
lutions for simple model of exciton with electron/hole dispersion in parabolic
approximation. It's main de�ciency is that it does not include any e�ects re-
lated to orbital composition of bands (no Bloch function e�ect) and is purely
real, which always gives degenerate states in exciton spectrum with the same
exciton angular momentum quantum numbers, e.g. 2px excitonic state is de-
generate with 2py state. To motivate a way around this problem, let us �rst
discuss which parts of full, complex form factor in�uence mostly it's value. For
concreteness, let us check for example di�erence between form factor describing
scattering between one chosen k point to some k′ + ∆k′ point (∆k′ is assumed
to be small):

V D
(
~k, ~k′ + ∆~k′

)
= γ

∑
~G

1∣∣∣~k′ + ∆~k′ − ~k − ~G
∣∣∣ × FD

(
~k, ~k′ + ∆~k′, ~G

)
. (3.36)

Form factor for such matrix element is given by

FD
(
~k, ~k′ + ∆~k′, ~G

)
=

∫
dz

∫
dz′ρ

~k′+∆~k′~k
vv

(
~G, z

)
ρ
~k~k′+∆~k′
cc

(
−~G, z′

)
×

× e−|z−z
′|·|~k′+∆~k′−~k−~G|.

(3.37)

One can observe that e�ect of ∆~k′ on matrix element V D is complicated, because
it a�ects

• denominator in Eq. (3.36)

• tight-binding coe�cients inside ρvv/cc

• exponent value depending on z,z'

76



• details of in-plane integration of Slater orbitals and summation over unit
cells (inside ρvv/cc as apparent from Eq. (3.26)).

We checked numerically, implementing in code selective turning on/o� of all
above contributions, that actually �rst two corrections (denominator and TB
coe�cient) yield very good approximation to matrix elements and the last two
(exponent and details of integration) do not contribute too much. This moti-
vated us to extract TB coe�cients from form factors, giving expression formally
equivalent to Eq. (3.25) with implicit summation over sublattices (α, β) and
orbitals (µ, ν) that can be written as

FD
(
~k, ~k′, ~G

)
=

2∑
αβα′β′=1

3∑
µνµ′ν′=1

CTBαβα′β′µνµ′ν′
(
~k, ~k′

)
·Fαβα′β′µνµ′ν′

(
~k, ~k′, ~G

)
,

(3.38)
where CTB coe�cient is given by product of 4 wavefunction coe�cients

CTBαβα′β′µνµ′ν′
(
~k, ~k′

)
=
[
vV Bαµ

(
~k′
)]∗

vV Bβν

(
~k
) [
vCBα′µ′

(
~k
)]∗

vCBβ′ν′
(
~k′
)

(3.39)

and quantity we call "orbital form factor" FDαβ... given by

Fαβα′β′µνµ′ν′
(
~k, ~k′, ~G

)
=∫

dz

∫
dz′ρ̃

~k′~k
αβµν

(
~G, z

)
ρ̃
~k~k′
α′β′µ′ν′

(
−~G, z′

)
e−|z−z

′|·|~k′−~k−~G|.
(3.40)

Those orbital form factors depend on analogues of product densities, now in the
form that does not depend on TB coe�cient's v:

ρ̃
~k′~k
αβµν

(
~G, z

)
=

1

NUC

NUC∑
i=1

NUC∑
j=1

exp
[
i
(
~k′
(
~Ui + ~τα

)
+ ~k

(
~Uj + ~τβ

))]
×

×
∫
d2r exp

[
−i
(
~G− ~k′ + ~k · ~r

)] [
φαµ

(
~r − ~Ui − ~τα, z

)]∗
φβν

(
~r − ~Uj − ~τβ , z

)
(3.41)

This method, being equivalent to Eq. (3.25) is not faster, however it helps to
realize, that CTB coe�cient can be calculated very fast from TB model and we
can take only orbital form factor at k′ − k − G = 0 limit. This approximation
is conceptually equivalent to treating long-range Coulomb interaction as not
dependent on details of orbital structure. Taking this limit gives

Fαβα′β′µνµ′ν′
(
~k − ~k′ − ~G = 0

)
= δαβδα′β′δµνδµ′ν′e

i ~G(−~τα+~τ+α′). (3.42)

Final equation for direct form factor is therefore simpli�ed to

FD
(
~k, ~k′, ~G

)
=

2∑
αα′=1

3∑
µµ′=1

[
vV Bαµ

(
~k′
)]∗

vV Bαν

(
~k
) [
vCBα′µ′

(
~k
)]∗

vCBα′µ′
(
~k′
)
×

× ei ~G(−~τα+~τ+α′).

(3.43)
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Up to our knowledge this expression is di�erent to similar ones available in litera-
ture,539,541,543,755 which are always taken for G=0. We note that phase rotation
given by this term is either 1 or C3 rotation (by phase factor exp (±2π/3)) and
allows to choose arbitrarily centered Brillouin zones. Discussion comparing ex-
citonic spectrum obtained by using full form factors and approximate ones in
moved to Appendix 6.9. We note that all our main results have been obtained
with full form factors without reducing orbital form factors.

3.4 Exciton �ne structure

As known from literature and from our own experience, computation of excitonic
spectrum is a numerically challenging task. To lower computational complex-
ity let us discuss now precisely how excitonic �ne structure calculations are
performed. First, we discretize Eq. (3.12) neglecting electron - hole exchange
interaction, since it is much weaker than direct electron - hole interaction. Also,
we choose in summation over k′ wavevectors only those associated with one
valley, as shown in Fig. 3.1. Remembering about singular terms as discussed
previously, Bethe-Salpeter like equation for one valley takes form[

∆E
(
~k
)
−∆GAP − Vsin.

]
An

(
~k
)

−
1/2BZ∑
~k′ 6=~k

(δk)
2
V D

(
~k, ~k′

)
An

(
~k′
)

= EnAn

(
~k
)
.

(3.44)

This equation represents dense, Hermitean matrix problem that is solved nu-
merically. Primary convergence parameter is number of k vectors into which
single valley was discretized. Details of computations and convergence studies
will be presented in next Section.

Now let's discuss further steps of �ne structure calculations. First we add spin
splitting to both valence and conduction bands. Spin-splitting modi�es electron-
hole energy di�erence ∆E

(
~k
)

= εσCB

(
~k
)
− εσ′VB

(
~k
)
. To calculate matrix ele-

ments, we choose to use spinless wavefunctions due to their negligible depen-
dence on spin. By this method we are able to obtain �ne structure in one valley
(e.g. +K), i.e. bright (spin-like) and dark (spin-unlike) A and B excitonic series.
Calculation of �ne structure in one valley (+K) automatically gives �ne struc-
ture in the other one (-K) due to symmetry of energies En(+K) = En(−K) for
spin-�ipped con�gurations of excitons. We found also that with proper gauge
of matrix elements (�rst Rohl�ng, Louie method, then setting phase of md=0

spinor component to 0), the following property of matrix elements between val-

leys is satis�ed V
(
−~k,−~k′

)
= V

(
~k′,~k

)
. Implementing this symmetry in BSE

one can prove formally, that exciton wavefunctions have to be related to each
other as A∗n

(
−~k
)

= An

(
~k
)
. We checked numerically, performing separate, full

calculations in +K and -K valleys that our implementation satis�es this prop-
erties, giving within numerical precision same excitonic spectrum and phases of
excitonic states related by mirror symmetry of k vector and complex conjugation
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(
A∗n

(
−~k
)

= An

(
~k
))

.

Having obtained �ne structure spectrum for spin, next step is to include in-
teractions "missing" from Eq. (3.44). We follow and expand the idea of "Ising
excitons" basis,527 taking 4 lowest states (1st and 2nd shell of 2D exciton) or-
dered in matrix notation as ↑↑Â

+K
bright = diag (E1s, E2p1 , E2p2 , E2s). Then, full

Bethe-Salpeter-like problem, including intra- and inter-valley exchange interac-
tions and inter-valley direct interaction, can be written as

ĤFS =

[
H+K,+K H+K,−K
H†+K,−K H−K,−K

]
(3.45)

H+K,+K =


↑
↑Â

+K
bright

+ V X 0 V X 0

0 ↓
↑Â

+K
dark

0 0

V X† 0 ↓
↓B̂

+K
bright

+ V X 0

0 0 0 ↑
↓B̂

+K
dark



H−K,−K =


↓
↓Â
−K
bright

+ V X 0 V X 0

0 ↑
↓Â
−K
dark

0 0

V X† 0 ↑
↑B̂
−K
bright

+ V X 0

0 0 0 ↓
↑B̂
−K
dark



H+K,−K =


V X 0 −V D + V X 0

0 0 0 −V D
−V D + V X 0 V X 0

0 −V D 0 0


We note that to solve such matrix problem, it is necessary to know matrix
elements constructed using excitonic wavefunctions A(~k). For example, matrix
elements for intra-valley exchange interaction V X are given by

[
UV XU†

]
ij

=

1/2 BZ∑
~k,~k′

A∗i

(
~k
)
Aj

(
~k′
)
V X

(
~k, ~k′

)
. (3.46)

where U are matrices diagonalizing single-valley, direct-interaction only Bethe-
Salpeter-like equation. We note that using this method allows to undersand
role of exchange interaction from the point of view of coupling between di�erent
excitonic states. Also, due to high localization of excitons in k-space, summation
in Eq. (3.46) doesn't have to run through all k points in single valley, but
might be easily restricted to part of BZ in which exciton wavefunctions are non-
zero. This reduces greatly number of electron-hole exchange inetractions matrix
elements V X that need to be calculated.

3.5 Computational details

In the following section let us discuss several numerical aspects of exciton calcu-
lations. First, as mentioned previously, equation for exciton has to be discretized
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on part of the Brillouin zone associated with one valley. This discretization can
be performed in several ways. As shown in Fig. 3.7 (a), one can either discretize
whole Brillouin zone using rectangular grid and then choose points associated
with one valley or chose only one "wedge" in one valley ("kite" inside rectan-
gle in Fig. 3.7 (a)) and then rotate it by ±C3 operation. Those two choices, in

Figure 3.7: (a) Possible two choices of k-points grid, either by rectangular dis-
cretization of whole BZ and choice of one valley, or choice of one wedge and then
wedge rotation by ±C3 symmetry operation. (b) Comparison of exciton spec-
tra for two choices of lattice discretization. (c), (d) Comparison of theoretical
result for parabolic exciton model and highly converged numerical calculation
performed on 120 000 k-points lattice for (c) �rst two excitonic shells and (d)
2-5 excitonic shells. Figure reproduced from Ref. 5.

principle, should give exactly the same results in the limit of large number of k
points (very dense grid). However, because of calculation can be done only for
limited number of k - points (which sets our dense matrix size, limited mainly by
RAM memory available on a given node in HPC clusters and diagonalization of
such large matrix time), �nite size e�ect distinguish between those two choices.
As shown in Fig. 3.7 (b), in second shell expected degeneracy of p states is
much better for C3 grid. We note that 2s state is not degenerate with 2p states
due to too small number of k - points. We studied systematically how many
k-points we need to include to reliably talk about excited excitonic shells, com-
paring analytical and numerical results for a parabolic model. Our �ndings are
summarized in Table 3.1.

As presented in Fig. 3.7 (c-d) excitonic spectrum is well converged to theoretical
values for shells 2-4, however for higher shells relative precision is getting worse.
Surprisingly at �rst sight, 1s excitonic state seems to deviate signi�cantly from
theoretical value -4 Ry. We traced this e�ect back to shape of our computa-
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excitonic shell precision (meV) # of k-points
n=1 20 ≈3200
n=2 20 ≈7300
n=3 14 ≈40 000
n=4 4 ≈120 000

Table 3.1: Estimation of number of k-points necessary to converge n-th excitonic
shell.

tional box in k-space, which in parabolic exciton model in principle should be
circular and in�nitely large. In our calculation it has triangular shape, therefore
for strongly bound excitons (small in real space, large in k-space) exciton wave-
function "feels" boundaries of computational box. One can get rid of this e�ect
by increasing screening and making excitons larger in real (small in reciprocal)
space and simultaneously increasing number of k points.

Results presented above are calculated for parabolic model dispersion of elec-
tron and hole energies and simpli�ed "1/|q-q'|" type of interaction which does
not include e�ects related to carrier wavefunctions. Inclusion of those is com-
putationally hard procedure that we discuss now. For example of lattice giving
reasonably converged second shell of exciton, one needs ≈ 7000 k-point k grid.
This requires calculating ≈ 70002/2 ≈ 106 matrix elements. We perform this
calculation in HPC cluster, calculating �rst form factors FD as de�ned in Eq.
(3.25) and saving them in permanent memory. When all form factors are avail-
able, we use them in BSE calculations, during which form factor database is
used for V D =

∑|Gcutoff |
G

FD(k,k′,G)
|k′−k−G| matrix elements evaluation. Summation

over reciprocal lattice vectors sets how many form factors are necessary and
greatly a�ects computational time. In Fig. 3.8 we show convergence of one ex-
emplary matrix element V D(k = K, k′ = Q). In our calculation we were able to
reach only Gcutoff = G1, therefore we estimate precision of magnitude of our
matrix elements to be underestimated by ≈ 20%. Even though relative error of
value of matrix element is similar to only one G=0, we perform summation of 7
- G's to assure proper symmetry for scattering between k' and k when distance
in "shortened" by G - vector, as discussed previously. Further details of numer-
ical integrations, performed using trapezoid numerical integration methods (we
always do only 2D integrals, �rst for ρ's, then for z, z′ integration) are NUC = 7,
integration grid density set to 0.5aB (Bohr radius), zmin/max = ∓5.0aB . When-
ever possible, we �rst calculate values of integrals on some sparse real-space
grids and if value is above properly de�ned threshold, we improve numerical
convergence of a given integral by increasing grid density 50x fold. We estimate
that our choice of details of integrations a�ects single form factor FD(k, k′, G)

by less than 10%.

Having discussed convergence of energies En and form factors FD, let us turn
to study of exciton wavefunctions An(k), focusing on how we identify their
symmetry (how we assign labels s, p, d). Wavefunctions An are obtained from
diagonalization of BSE given by Eq. (3.44). In Fig. 3.9 (a) and (b) we show
for reference how excitons look in k-space in simplest parabolic exciton model.
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Figure 3.8: Convergence of exemplary direct Coulomb matrix element in function
of Gcuto� which de�nes number of G vectors included in summation inside those
elements. Figure reproduced from Ref. 5.

One can clearly distinguish 1s and 2px states, �rst having maximum at K point
(center of triangle representing +K valley) and rotational symmetry and second
having node structure and minimum at +K. This behavior is in contrast with
results obtained for full tight-binding calculations with complex electron-hole
interaction, shown in Fig. 3.9 (c-d). Although 1s state amplitude is similar (even
though there is a complex phase present even for 1s state), novel 2p− state no
longer posses nodal structure, but interestingly has circular symmetry, just as
s-like state. On the other hand, contrary to s-like state, it has minimum at it's
center. We trace this state to be linear combination of px and py states (2p± =

1/
√

2(2px±i2py)) which has exactly these properties. As will be discussed later,
this mixing results from the fact that electron - hole direct interaction is complex.
Due to topology of electron and hole wavefunctions, states with non-zero L feel
"geometric" analog of magnetic �eld, usually called Berry's �eld strength and
couple to each other.

3.6 Excitonic spectrum of MoS2

In the following Section results of numerical studies of Bethe-Salpeter-like equa-
tion for excitonic states will be discussed. In presentation that follows we detach
theory describing electron-hole transition energies from model of electron-hole
interaction used (e.g. we study tight-binding model with simple 1/|q− q′| inter-
action model). Two types of screening are used, i.e., static and R.-K. screening.
Rationale for subsequent parts is to present di�erent renormalization processes
a�ecting excitonic spectrum, leading to more and more realistic description of
excitonic series. In our results we decide to discuss excitonic binding energies
in units of excitonic Rydberg Ryµ = µe2

2h̄2ε2
to detach them from speci�c value

of static screening. Value of Ry depends in parabolic approximation on e�ec-
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Figure 3.9: Exciton wavefunction amplitudes on numerical k-grid with K point
at the center. (a) 1s type state (2s in the inset), (b) 2p1 (2p2 in the inset)
excitonic states for simpli�ed 1/|q − q′| interaction model. Results in (c) and
(d) show how full tight-binding energies and wavefunctions do not modify in
principle amplitude of 1s state, however in�uence strongly 2p - like state, that
due to chirality of interaction becomes mixture of 2px and 2py state. Figure
reproduced from Ref. 5.

tive masses of electron and hole through reduced mass µ = (1/m∗e + 1/m∗h)−1

and static screening parametrized by ε = 4πε0ε
stat.
r . Discussion of analytically

solvable problem of exciton in e�ective mass approximation is presented in Ap-
pendix 6.7.

3.6.1 Role of Q-points and band nesting

In the following Section e�ect of band structure (electron and hole dispersion) on
excitonic levels is discussed. How di�erent dispersion models a�ect electron-hole
dispersion energies is summarized in Fig. 3.10. Those direct transition energies
enter as diagonal of Bethe-Salpeter-like equation that is corrected by singular
term. Eq. 3.44 is solved �rst for parabolic dispersion model, simpli�ed 1/|q −
q′| interaction and static screening. Excitonic spectrum gives numerically (as
expected from theory) binding energy of �rst 1s state close to -4 Ryµ (deviation
already identi�ed as �nite BZ e�ect) and degenerate second shell of three states:
2s, 2px, 2py, which energy is close to theoretically known value En=2−4 = −4/9

Ryµ.

In next calculation, we change the dispersion model to massive Dirac fermion,
keeping interaction as 1/|q − q′|. We notice that binding energy of 1s state
lowers to ≈ −5.5 Ryµ. This behavior can be understood as increased "average"
e�ective mass, i.e. carriers in massive Dirac fermion model on average taken over
BZ are described better by higher e�ective mass than in parabolic model. This
naturally leads to stronger binding corresponding to lower energy of 1s state. We
observe also larger separation between �rst and second shell and small breaking
of degeneracy between 2s and 2px, 2py states within second shell.
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Figure 3.10: (Top panel) Electron-hole transition energies obtained using three
di�erent dispersion models, displayed in one valley. (Bottom panel) Excitonic
spectrum calculated using simpli�ed interaction 1/|q−q′|. Parameters of screen-
ing are chosen in such way to reproduce Ry = 100 meV, corresponding to ex-
perimental estimates for 1s exciton binding energy E1 ≈ 400 meV for MoS2 on
SiO2. Red arrow shows general trend and should be compared with opposite
e�ect presented in Fig. 3.12. Figure reproduced from Ref. 5.
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Figure 3.11: (a) n>1 excitonic shells calculated for parabolic and TB dispersion
models, simpli�ed 1/|q − q′| interaction and static screening. Exciton wave-
function for (b) 1s and (c) 2s to 4s states. Logarithmic color scale representing
magnitude of |An(k)| is used. Single valley BZ is discretized to 120 000 k-points,
necessary for converged calculation up to 4-th excitonic shell. Figure reproduced
from Ref. 5.

Finally, when tight-binding dispersion model is used, e�ects described for mas-
sive DF model become even more pronounced. Energy of 1s lowers as much as
to -10 Ryµ, there is large renormalization of 1s - 2s states energy di�erence and
states with exciton angular momentum L=0 (2s) and |L|=1 are clearly no longer
degenerate, as shown in Fig. 3.10. Similar e�ect is observed for higher shells, as
shown in Fig. 3.11 (a). In addition to "average lowering" of e�ective mass pro-
cess, there is pronounced contribution coming from existence of Q points, that
can be observed in excitonic wavefunctions, as shown for 1s− 4s states in Fig.
3.11 (b-d). Breaking of degeneracy of 3s and 4s state for L 6= 0 is also clearly
observed, together with breaking of degeneracy of states with di�erent L. We
conclude that due to existence of 3 Q points around K point in single valley, full
rotational symmetry of s-like states in broken and therefore those states react
more strongly than others to dispersion model change from parabolic to TB.

3.6.2 Role of interactions screening

As discussed in subsection "Screening of Coulomb interactions", static screening
does not describe faithfully actual screening of interactions in 2D semiconduc-
tors. Simplest correction, capturing non-locality of screening via it's |q − q′|
dependence can be modeled by Rytova-Keldysh theory and parametrized by
polarizability parameter α. In our calculation we use simpli�ed direct matrix
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Figure 3.12: Di�erence between static (β = 0) and Rytova-Keldysh (β = 1)
screening for TB dispersion and 1/|q−q′| interaction V D. Polarizability is taken
as α = 2.2 Å. Renormalization trend is shown with red arrow, which should be
compared with Fig. 3.10. Figure reproduced from Ref. 5.

element entering Eq. (3.44) in the following form:

V D
(
~k, ~k′

)
=

1

|q − q′|
×

1− β
εstat.r

+
β

εR-Kr

(
1 + 2πα

∣∣∣~k′ − ~k − ~G
∣∣∣)
 , (3.47)

where β controls switching between static and R.-K. screening.

In Figure 3.12 we present how excitonic spectrum gets renormalized for TB
model dispersion and 1/|q−q′| interaction when static screening is switched from
homogenous one (β = 0) to R.-K. model (β = 1). One can observe, that non-
local screening has opposite e�ect than changing dispersion from parabolic to
TB, and 1s state energy rises from -10 Ryµ back to approximately - 4 Ryµ. Also,
split L = 0 and L 6= 0 excited exciton states change their energies drastically,
reversing order of states as well, i.e., for β = 0 order of states is 1s− 2s− 2px,y,
while for β = 1 we obtain 1s− 2px,y − 2s, consistent with literature.195,203

3.6.3 Renormalization of spectrum from "2D-like"to "3D-

like"

In addition to e�ects of dispersion and screening renormalizing 2D exciton spec-
trum, direct - electron hole interaction form factors FD have to be taken into
account. Generally speaking, because their value is ≤ 1, their averaged e�ect
translates into lowering absolute value of binding energy and pushing excitonic
shells towards each other. Focusing for a moment on absolute values of form
factors, result of calculation on 7000 k-point grid (largest we were able to study
with full e�ect of wave functions calculated with form factors given by Eq. (3.28)
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Figure 3.13: Excitonic series of s states for di�erent models of dispersion (calcu-
lated with R.-K. screening and simpli�ed 1/|q − q′| interaction) and with e�ect
of full TB wavefunctions vs 2D and 3D exciton spectrum, all scaled to give the
same energy of 1s state. Figure reproduced from Ref. 5.

) that allows for reliable discussion of only �rst and second shell is shown in Fig.
3.13. We conclude that collective e�ect of renormalization of 2D Rydberg series
by dispersion, interaction screening and carrier wavefunctions is to make s-like
series look like "more than 3D" exciton. It means that even though exciton is
physically con�ned to 2D plane of MX2, it's excited state series resembles more
3D excitonic Rydberg ladder of states. We note that non-hydrogenic Rydberg
series is usually explained as e�ect of non-local screening.173 With respect to lit-
erature known to us, we add to this understanding that it is not only related to
screening, but depends also heavily on proper dispersion modeling (especially
secondary minima in CB at Q points) and inclusion of proper wavefunction
e�ects a�ecting interaction form factors FD.

3.6.4 E�ects of form-factor and topology of interactions

As mentioned before, taking into account electron and hole wavefunctions af-
fects exciton �ne structure by contributing to renormalization of s-like states. In
addition to that, another interesting e�ect occurs. Because direct electron-hole
interaction depends on wavefunctions, it's value is in general complex and phase
of matrix elements V D(~k,~k′) cannot be transformed to zero by any gauge trans-
formation. Taking as an example matrix elements describing scattering of exci-
tons from ~K point to some ~k′ points close to ~K and described as ~k′ = ~K + qeiφ

we have

V D
(
~k = K, ~k′ = ~K + qeiϕ

)
=
∣∣∣V D (~k = K, ~k′ = ~K + qeiϕ

)∣∣∣ eiθ. (3.48)
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Figure 3.14: Schematic diagram how turning on phase of matrix elements a�ects
�rst two shells of excitonic spectrum.

Our numerical result is such that absolute values of such matrix elements cal-
culated between ~K point and points on the circle around with radius |q| are
constant, but their phase rotates continuously up to 2π on the complex plane,
see Fig. 6.6 (b) in Appendix 6.9 . This means that electron - hole direct interac-
tion can be called chiral. This chirality is interesting itself, however let us turn
to discussion how it a�ects excitonic �ne structure. Role of complex interaction
phase manifest itself in two e�ects: �rst, it slightly renormalizes positions of s -
like states, however this e�ect is subtle, and is magni�ed on schematic Fig. 3.14.
On the other hand, clearly visible e�ect is that e.g. on second shell, normally de-
generate p-like states become split in energy and mix, forming 2p±1 = 2px±i2py
states. More generally, due to complex interaction, all states with non zero ex-
citon momentum L also mix and split (e.g. 3p±, 3d± etc.).

Focusing on exact value of splitting of L 6= 0 state in second excitonic shell, we
discovered that it's value depends heavily on screening. If screening parameters
for full TB model (TB dispersion and form factors with wavefunction e�ects
making them complex) and R.-K. screening are chosen such to give binding
energy of 1s state 378 meV (α = 1.0), value of 2p-2p splitting is ∆2p−2p = 3.5

meV, see Fig. 3.15 (a). However, if screening parameters are chosen such to give
1s state energy 458 meV (α = 0.5), we obtain ∆2p−2p as large as 13.0 meV. More
systematic study of how polarizability parameter α a�ects 2p - 2p splitting is
presented in Fig. 3.15 (b). For the case of α = 0.0, splitting of p states can be as
large as 120 meV. For more realistic parameters of α giving binding energies of
1s state below 500 meV (inset of Fig. 3.15 (b)), this splitting is predicted to be
below 20 meV. In addition to that we check how much summation over G vectors
in complex form factors a�ects this value ("error bars" in Fig. 3.15 (b)). We
calculate this "error" comparing p state splittings obtained from single G vector
that minimizes

∣∣∣~k′ − ~k − ~G
∣∣∣ distance in k space with summation performed up to

Gcutoff = |G1|. We conclude that error introduced is large only for un-physical
α = 0 case, but for more realistic values is rather small.

Splitting of states with non-zero L reminds of situation when magnetic �eld is
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Figure 3.15: (a) Fine structure of exciton spectrum in full TB model with in-
clusion of e�ect of complex electron hole interaction. Two parameters of R.-K.
screening model are studied. (b) 2p-2p energy splitting dependence on polar-
izability α. Error bars estimate how large error associated with lack of sum-
mation over G vectors is ( only one term vs more correct summation up to
Gcutoff = |G1|). Inset in (b) shows corresponding energy of 1s state vs screen-
ing. Figure reproduced from Ref. 5.

applied, which distinguishes between states with non-zero angular momenta. In
our case there is no magnetic �eld but instead there is "geometric " �eld resulting
from topology of wavefunctions. This �eld, described by gauge invariant Berry's
connection has to come from properties of wavefunctions. Now we trace this
Berry's connection e�ect on electron - hole interaction. Starting with direct
interaction matrix element for ~k = ~K + ~q and ~k′ = ~K + ~q′ points close to the ~K
point, we can expand Bloch wavefunctions un formally in �rst order of ~q as

un

(
~K + ~q, ~r

)
≈ un

(
~K,~r

)
+
[
~∇~qun

(
~K + ~q, ~r

)]
~q=0
· ~q. (3.49)

Using this approximation one can re-arrange terms under 6 dimensional ~r, ~r′

integral as ∫∫
R3

[
ei(~q−~q

′)·(~r−~r′)V 3D (~r − ~r′)×

×
[
|uv( ~K,~r)|2|uc( ~K,~r)|2 + ∆q · ~q + ∆∗q · ~q′

] ]
,

(3.50)

where ∆q is given by

∆q = |uv( ~K,~r)|2 · uc( ~K,~r′)
[
~∇~quc( ~K + ~q, ~r′)︸ ︷︷ ︸

Berry's connection

+(v ↔ c)
]
. (3.51)

Equation above shown how (in general non-Abelian756,757) Berry's connection
enters kernel of matrix elements and therefore, constitutes an example how
topology a�ects not only single - particle, but also many body properties of
correlated states.

To conclude this subsection, we note that similar values of 2p-2p states splitting
are reported to come out from calculations using massive Dirac fermion model
to both dispersion and form factor of direct electron-hole interaction.430,541 This
approach is, however, valid only close to the K point and whole calculation has
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to be restricted to small fraction of BZ. If one uses mDF Hamiltonian applicable
to all points in given valley in form

ĤmDF
(
~k
)

=

[
∆/2 gke

iθk

g∗ke
−iθk −∆/2

]
, (3.52)

with gke
iθk = t exp(−i~k~b)(1 + exp(i~k ~a2) + exp(i~k(~a1 + ~a2))), ~b =

(
d‖, 0

)
and

3/2d‖t = h̄vF. In principle, it is possible to derive form factor of interaction for
such model

F (k, k′) =

[
sin

ϕk′

2
sin

ϕk
2

exp [−i (θk − θk′)] + cos
ϕk′

2
cos

ϕk′

2

]2

, (3.53)

with cosϕk = ∆/2√
∆2/4+g2k

. When such model is used consistently for whole val-

ley, we �nd approximately 20 µeV splitting of 2p± states, which is much smaller
value than our TB result. Only unphysical extension gkeiθk ≈ h̄vF(iqx − qy) to
whole valley gives approximately 30 meV splitting comparable to TB model. We
conclude therefore, that massive Dirac fermion model (and wavefunctions ob-
tained from it) does not capture correctly not only renormalization of spectrum
due to dispersion, but also underestimates topological splittings and should be
treated rather qualitatively.

3.6.5 E�ect of spin orbit coupling in conduction band

In the following section let us focus on the e�ect of spin splitting on exciton �ne
structure. Largest e�ect, related to splitting of bands in VB, is A - B exciton
splitting. For ∆SOC

V B = 148 meV we obtain A-B 1s excitonic states split by
≈ 125 meV for α = 0.5 and full TB model. Much more subtle e�ect, introducing
splitting of A exciton state to spin bright (same spin arrangement in VB and
CB) and spin dark (opposite spins) is related to interplay between spin splitting
in CB and di�erent dispersion of bands, that can be understood approximately
as di�erent e�ective masses for carriers with di�erent spins. Starting with clear
situation of 10 meV splitting in CB one can see in Fig. 3.16 that, intuitively,
lowest state is bright A+K

bright and dark state A+K
dark lies above it. We note that

value of this splitting (5 meV in speci�c case here) is not the same as spin-
splitting at K point. We trace this e�ect to before-mentioned e�ective masses
di�erence. Therefore, if value of this splitting in CB is further reduced, one
can end up in situation when even though single-particle arrangement of bands
points to "bright < dark" arrangement, di�erent e�ective masses cause inversion
of excitonic states and spin dark state becomes ground excitonic state. We
conclude that this situation happens in MoS2, which has very small ∆SOC

CB ≈ 3

meV. This conclusion is consistent with recent GW-BSE calculations387,533 and
some experiments.192

3.6.6 The role of electron-hole exchange interaction

On top of spin splitting e�ects, up to this point we consistently neglected gener-
ally small electron-hole exchange interaction. This interaction, however, controls
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Figure 3.16: Comparison between spin-polarized bands and resulting bright -
dark arrangement of states in materials with spin-like arrangement of bands
around Fermi level. For materials with large splitting in CB, it is clear that lowest
exciton is bright (same spin in VB and CB) and above it lies dark excitonic state
(opposite spin in VB and CB). On the other hand, higher spin-polarized band in
CB has larger e�ective mass, therefore even without exchange interaction e�ect
it's binding energy may be larger that single-particle spin splitting at K point.
Black bars denote two lowest s-like states. All presented energies are given in
meV. Lower spin-split and in VB is not shown. Presented values are calculated
using full TB model and polarizability α = 0.5. Figure reproduced from Ref. 5.

Figure 3.17: Role of electron-hole exchange interaction V X and it's screening
on �ne structure. For clarity we start with spin-degenerate bands to disentangle
e�ect of spin splitting and e.-h. exchange. When no V X is present, 1s excitonic
states are degenerate. When exchange is turned on, dark - bright splitting value
depends on model of screening, as discussed in text. All values presented are
given in meV. Figure reproduced from Ref. 5. Figure reproduced from Ref. 6.
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subtle splitting of dark and bright states, because it a�ects only bound states of
excitons with the same spin, increasing their energy (due to quantum mechanical
electron - hole repulsion) in opposite to direct interaction. Starting with spin-
degenerate states to make our analysis more transparent, when no exchange
interaction V X is present, dark and bright states are degenerate, as shown in
Fig. 3.17. When unscreened electron-hole interaction ("bare V X") is turned on,
energy of bright state is increased (binding energy is lowered) up to ≈ 20 meV
(in Fig. 3.17 8 meV), depending on details of screening used and 1s ground
state energy. When either homogenous screening or R.-K. models are applied
also to exchange interaction, this value is signi�cantly lowered. We conclude
that in all cases, trend is such that dark excitonic state in MoS2 is lowest one,
adding up to similar conclusion from spin splitting discussion above. We note
that in �eld theory based DFT+GW+Bethe-Salpeter approach387 electron-hole
exchange interaction is always taken as bare, unscreened one. In our approach
derived from CI approach, both direct and exchange interactions are treated
on equal footing and should be screened in the same way. This issue has been
discussed in literature,533,758 but in our view further studies are necessary to
understand source of this discrepancy. On the other hand, irrespective to details
of screening, we conclude that in MoS2 lowest excitonic state should be dark
due to spin and exchange e�ects.

3.6.7 Inter-valley exciton scattering

Before we dwell into discussion of charged excitons �ne structure, let us men-
tioned brie�y issue of inter-valley exchange interaction. From our calculations
presented above, we conclude that in +K and −K valleys 1s excitonic states are
degenerate. This conclusion does not, however, include inter-valley exchange,
which in principle may be of the order of intra-valley exchange due to lack
of 1/|k − k′| asymptotic behavior, known for direct interaction. Focusing on
excitonic states with center-of-mass momentum QCM = 0, it is known from
theoretical arguments387,522 that inter-valley exchange exciton coupling J can
be divided into short-range and long range part as J = Jshort−range−G6=0

QCM
+

J long−range−G=0
QCM

. It can be proven formally, that short-range part Jshort−range−G6=0
QCM

vanishes for QCM = 0 by C3 symmetry of excitonic states. On the other hand,
long-range interaction can be expanded in second power of exciton momentum
J long−range−G=0
QCM

∼ |QCM |2, which still gives no coupling between excitons in
+K and -K for QCM = 0. We checked numerically that this e�ect is actually
di�cult to reproduce because of �nite precision with which exchange matrix
elements could be calculated. Only when screening of exchange interaction was
turned on, we were able to converge our results to give +K and −K exciton
splitting below 1 meV.
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Figure 3.18: Trions in di�erent MX2 materials with electron-hole pair in bright
con�guration enabling optical activity. Single - particle levels in +K and -K
valleys are shown in left and right panels, respectively. In VB only one spin
band is shown due to large spin-splitting. In CB both bands are presented. (a)
Inter-valley singlet and triplet trion states in material with small SOC in CB
(MoS2), along with intra-valley singlet shown in (b). (c-d) Bright trion species
in materials with dark excitonic state and large SOC in CB, (c) showing inter-
valley triplet and (d) intra-valley singlet. In bright material with large SOC in
CB (e.g. MoSe2) only one bright trion state is possible, i.e., inter-valley singlet
shown in (e). (f) Scheme of dark-bright excitonic (not trionic) state arrangement
corresponding to (a-b), (c-d) and (f) trion schemes.
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3.7 Exciton interaction with additional carriers

It is well known, that in realistic samples electron gas concentration might be
signi�cant, leading to interaction of excitons with excess carriers, usually n-type.
Under assumption of small concentration of this gas, one can imagine additional
bound state of exciton + electron, called charged exciton or trion. Those optical
complexes have very large photo-luminescence response and can even dominate
PL signal.6 As discussed in Introduction, quantitative calculations for those
states are extremely challenging due to problem of renormalization of bands
with excess carriers, much larger Hilbert space of possible 3-body excitations
and slower convergence with respect to k-space discretization. In the following
subsection we discuss only qualitatively how our understanding of exciton �ne
structure of exciton in MoS2 may help with understanding of trion �ne structure.

Our analysis is summarized in Fig. 3.18. We show there valley con�guration
possibilities of bright, negative trion states such that electron and hole reside
in the same valley and have the same spin, allowing for optical recombination.
Then, second electron in CB may have di�erent possibilities of valley and spin
arrangement. In addition to this di�erent con�gurations, problem of dark-bright
splitting of exciton comes into play. In Fig. 3.18 (a-b) we show most interesting
e�ect that allows to propose explanation of experimentally observed trion �ne
structure in MoS2. Because of bright-dark inversion, as described in previous
section, bright excitonic state has higher energy than dark one. It is possible for
exciton, therefore, to bind carrier from both (a) +K and (b) -K (b), e�ect known
from materials with large negative SOC splitting (c-d), i.e., WX2. Interestingly,
in contrast to WX2, inter-valley con�guration of trion has both spins oriented
in the same direction, forming singlet trion state instead of triplet. Inter-valley
triplet state in MoS2 is predicted to have higher energy and be unbound.759

Trion �ne structure cannot be observed in material with large SOC in CB and
bright ground excitonic state (Fig. 3.18 (e)) like MoSe2 due to large repulsion if
electrons have the same spin and reside in the same valley (intra-valley triplet
trion is unbound). In conclusion, MoS2 is a special material with respect to
both MoSe/Te2 and tungsten based WX2 TMD's due to it's small SOC and
dark excitonic ground state combination with bright arrangement of single -
particle bands (which are unlikely, but possible to invert due to presence of
addition electron gas, as we discuss in Ref. 6).

Under assumption that trion �ne structure is described by T1 inter- and T2 intra-
valley singlet states, let us comment on what controls their energy splitting.
Total energy di�erence between their con�gurations in MoS2 is given by

ET1
− ET2

= ∆SOC
CB +

(
−
[
V Dtot.

(
h+K

1 , e+K
2

)
− V Dtot.

(
h+K

1 , e−K2

)]
+
[
V Dtot.

(
e+K

1 , e+K
2

)
− V Dtot.

(
e+K

1 , e−K2

)])
.

(3.54)

In contrast to equation above, energy splitting between intra-valley singlet TS
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and inter-valley triplet TT in tungsten based materials is given by

ETS − ETT = V Xtot.
(
e+K

1 , e−K2

)
+

(
−
[
V Dtot.

(
h+K

1 , e+K
2

)
− V Dtot.

(
h+K

1 , e−K2

)]
+
[
V Dtot.

(
e+K

1 , e+K
2

)
− V Dtot.

(
e+K

1 , e−K2

)])
.

(3.55)

In both expressions Vtot. symbolize total energy associated with direct / ex-
change interactions. We conclude that because V Dtot. terms have similar mag-
nitude and mostly cancel each other contribution to total splitting, value of
trion �ne structure splitting in MoS2 depends mostly on spin-orbit coupling in
CB, while in WX2 measures mostly total exchange energy between electrons in
CB. We note that precise comparison with experiment is unfortunately chal-
lenging due to increased splitting of trion �ne structure in function of electron
gas concentration, while our result are valid for vanishing density regime. More
advanced study of e�ects of density of excess carriers on exciton and trion �ne
structure is left for future study.
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Chapter 4

Physics of gate - de�ned

quantum dots in MX2

materials

In the following Chapter tight-binding model derived in Section 2 is used to
study quantum dots, de�ned electrostatically by metallic gates. These gates are
modeled using parabolic con�ning potential, trapping additional electron added
into conduction band. First, a model of computational box is presented along
with rudimentary tests. In next step harmonic oscillator spectrum resulting from
K- points derived and Q-points derived states is analyzed, paying attention
to topological e�ects and special symmetry of Q-point derived states. Then,
interplay of dot radius and spin splitting is analyzed from the point of view of
electronic shells arrangement, which in�uences charging spectrum of quantum
dots.

4.1 Model of a quantum dot

We begin our discussion with a model of electrostatic quantum dot. First, we
de�ne some computational box describing our MX2 semiconductor, using real
space tight-binding hopping matrix elements described by Eq. (3.29-3.29) and
Eq. (6.25-6.27), as shown in Fig. 4.1. We implement and test below possibility
of turning on and o� periodic boundary conditions (PBC) and selective modi-
�cation of on-site energies on the edges of box, simulating in approximate way
passivation of a box. Our con�ning potential induced by metallic gates686 has
minimum at the center of rectangular region and is set to 0 when touching dot
radius RQD. Depth of con�ning potential is parametrized by constant V0. The
total Hamiltonian of our system can be written, therefore, as

H = H0 +
∑
iα

Vic
+
iαciα. (4.1)

97



Figure 4.1: (a) Model of computational box and con�ning potential viewed from
the top. (b) Side view of con�ning potential.

Potential Vi on i-th atoms is modeled as

Vi = V (ri) =


1

2
ω2r2

i − V0, for ri < RQD

0 , for ri > RQD,
(4.2)

where both quantum dot radius RQD and potential depth V0 are hidden inside
harmonic oscillator frequency ω2 = 2|V0|/R2

QD. Except stated otherwise, we
take V0 = 300 meV. At the edge of the quantum dot we set our con�ning
potential to 0, because we were forced to use periodic boundary condition to
deal with edge states of our computational box, as described below.

As discussed in Introduction, there are many studies available for MoS2 (which
are expected to be similar in other MX2 materials) showing that on physical
edges of samples metallic states occur with energy in the gap. We have checked
that our tight-binding model reproduces DFT predictions and, e.g. in nanorib-
bon geometry (equivalent to our computational box extended to in�nity in one
dimension), it gives in-gap edge states. We move those nanoribbon results to Ap-
pendix 6.10. Those in-gap states, when further quantization by cutting �nite box
is induced, naturally lead to many in-gap edge states if we use open boundary
conditions, as shown in Fig. 4.2. However, when PBC is applied, they naturally
disappear and in such torus geometry, as expected, we recover bandgap between
VB- and CB- derived states. Interestingly, we tested another method of dealing
with such states by changing energy of on-site matrix elements, which e�ec-
tively simulates passivating edges of physical samples by e.g. hydrogen atoms.
We found that those edge states shift their energy, however it is not possible
to move them out of band gap energetic region, situation similar to topological
insulator quantum dots.760

Edge states that are visible in Fig. 4.2 when no PBC is applied are interesting
themselves. However in our setup, in which con�nement is induced by metallic
gates, in realistic physical situation we are very far from dot center and edge
states cannot in�uence behavior of states localized inside QD. Because of this,
we choose to use PBC. One may wonder how con�ning potential works in this
setup and if results for opened / closed boundary condition are comparable to
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Figure 4.2: Comparison between eigenvalues when computational box (without
QD potential) Hamiltonian is diagonalized with and without PBC. Only states
around Fermi level are shown.

each other. In Fig. 4.3 (a) we show how increasing depth of potential V0 lowers
states from bottom of CB of torus inside gap region. Then we compare spectrum
with and without PBC in Fig. 4.3 (b), proving that states localized inside QD
(as shown in inset) are not a�ected by presence of edge states, depicted as
small blue symbols in Fig. 4.3 (b). We conclude that PBC are not a�ecting QD
states, therefore whenever dot potential does not "touch" edges of computational
domain, we can use model with PBC in which numerical results are easier to
interpret.

Another issue that one may rise, is that we model our QD with TB model which
uses only symmetric orbitals with respect to Mo plane. One may expect, that
application of perpendicular electric �eld E induces mixing between even and
odd orbitals due to breaking of mirror symmetry in z direction. We estimate,
however, that with experimentally realistic761 gate voltages (e.g. ±100 V for
sample thickness 103 nm ) di�erence between potential in top and bottom sulfur
atoms is δV = 0.19 V. Simplifying discussion to states in CB at K point only,
anti-symmetric band not included in our TB model is 1.37 eV apart, contributing
below 0.5% to wavefunction of state derived from bottom of CB. Therefore, we
neglect this contribution and leave precise estimation of this e�ect with full TB
including symmetric and antisymmetric orbitals to future study.

We �nish description of our model with technical comment on numerical pro-
cedure used in our calculation. Because we are interested in rather large quan-
tum dots comparable to those available experimentally,734,735 e.g. for dot with
RQD = 100 nm we need approximately 220 × 220 nm computational box that
includes approximately 1.1 ·106 atoms. To perform diagonalization of such large
matrix e�ciently it is usually enough to use iterative Krylov - like methods,
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Figure 4.3: (a) E�ect of lowering of depth of potential −V0 on states from
bottom of torus CB. (b) Comparison of spectra with and without PBC. Size
of the symbol codes how much given eigenstate is localized inside QD (large
symbol - state fully inside QD, small symbol - state localized away from QD
region). Inset: example of electron wavefunction localized inside QD region.

e.g. Lanczos algorithm. In the following work we have taken another route, uti-
lizing new algorithm based on contour integration technique, called FEAST762

as implemented in Intel MKL numerical libraries. This method is interesting,
because it's performance depends on number of eigenvalues in a given energy
range, therefore we are able to speed up calculations by getting rid of edge states
and focus only on those in-gap states localized inside QD. Because our TB model
is short - ranged in real space (uses only NN and NNN), we are able to avoid
producing large matrices by coding so-called CSR3 matrix storage format. In-
ternal convergence parameters for diagonalization inside FEAST routine are set
to 6 contour integral points and sum of all eigenvalues found (usually 100) error
is set to be below 1 meV, so average error per 1 eigenvalue is approximately 1
µeV.

4.2 Study of size dependence of the quantum dot

electronic spectrum

Before we go into details of physical understanding of spectrum, let us describe
simple, but useful results of size studies of di�erent QD's. Results obtained for
di�erent radii of QD's are summarized in Fig. 4.4. To simplify discussion, we
begin with states calculated without inclusion of spin-orbit coupling. Fig. 4.4
(a) presents results of diagonalization for few QD radii in energetic window
in which all states are localized strictly inside QD, fact we checked studying
localization of wavefunctions associated with each state. First, one can observe,
that with increasing dot radius more and more states "fall into" quantum dot
due to decreasing distance between consecutive shells. Also, position of lowest
two states goes down in energy, as presented in Fig. 4.4 (b). In Fig. 4.4 (c)
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Figure 4.4: (a) States localized inside parabolic quantum dots for few di�erent
radii RQD. (b) Energetic position of lowest energy state doublet. (c) Energy dif-
ference between �rst and second shell in function of RQD. (d) Internal splitting
of n-th energy shell for two di�erent QD sizes.
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Figure 4.5: (a) Degeneracy of each shell of ±K - point derived spectrum. (b)
Schematic of 2D parabolic Fock-Darwin ladder associated with each valley (+K,
-K) with energy di�erence between shells ∆E1−2 as in Fig. 4.4 (c) and internal
splitting of n=2 shell ∆E1−2, as in Fig. 4.4 (d).

energetic distance between �rst and second shell (approximating distance of
almost equidistant higher shells) is shown in function of RQD. One can observe
monotonic decrease of this value following 1/RQD dependence and helping to
asses what would happen if dot radius is so large that exact calculation becomes
unfeasible. In Fig. 4.4 (d) we show interesting e�ect explained later in details,
that within each shell states are not degenerate. We checked that this splitting of
usually degenerate shells in 2D parabolic QD model is not the result of numerical
error, but comes from topological properties of MX2 wavefunctions. We note
here only that this e�ect is more pronounced in smaller QD's and is consistent
with similar splittings in strain-induced QD calculations.708

4.3 K-point-derived spectrum of electronic states

We begin analysis of spectrum from comment about k-space origin of states
inside QD. By studying lowest states wavefunctions shown in Fig. 4.5 (a) , one
can quickly realize that vast majority of electron density localizes on Mo metal
atoms. On each Mo (S2) atom (dimer) there are 3 complex numbers obtained
from Hamiltonian diagonalization that describe spinor composition of states.
We checked that for our lowest states, always md = 0 component of the spinor
is largest (and p−1 for part of wavefunction localized in S2 dimers), meaning
that states have the same composition as bottom of CB at K point. This allows
us to distinguish quantized states formed from k - vectors close to the K -
points. We have checked also, that working with plane - wave basis of functions
(done by this thesis author's collaborators)4,7 de�ned on torus one can get to
the same conclusion. We distinguish between +K and -K valley states either
by checking mp±1 component of spinors or by plotting which plane-waves with
given k - vector from torus projected on BZ give largest contribution. We note
that both methods allow to distinguish states formed from neighborhood of Q
points in BZ. Speci�cally, �rst method works because spinor components at Q
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Figure 4.6: (a) Three Q-points surrounding one K point in valley. (b) Schematic
arrangement of states derived from Q-points in QD, analogous to spectrum in
Fig. 4.5 (b). (c) Large dots show ground and excited Q-point states in QD using
spinor composition detection mechanism. Small dots represent K-point derived
states.

point are di�erent than at K and allow for easy and quick identi�cation from
which minimum given state is derived from in multivalley system.

Having identi�ed valley from which given state is, one can notice immediately
that for state within each valley we can associate states with degeneracy increas-
ing by one with every shell, see Fig. 4.5 (a), just as in 2D harmonic oscillator
spectrum known e.g. from self-assembled GaAs quantum dots.763 Doubling of
number of states in given shell due to existence of two minima in CB (+K, -K)
instead of usual one (Γ in GaAs) is therefore proven and schematic of states
arrangement is shown in Fig. 4.5 (b). We note also, that unlike in GaAs QD's,
degeneracy breaking for n ≥ 2 occurs, as explained further in text.

4.4 Q-point-derived spectrum of electronic states

As shown in Fig. 4.5 (a) in small rectangular boxes, when we follow Fock-Darwin
ladder of states derived from K point, somewhere at higher energy we always
�nd 6 fold perfectly degenerate states breaking this ladder. Their existence and
degeneracy can be easily understood from multivalley structure of MX2 conduc-
tion band. From ab initio studies and our TB model reproducing them one can
observe that every minimum in CB at K point in one valley is surrounded by
3 secondary minima at Q points, as shown in Fig. 4.6 (a). With each of these
minima there is associated Fock-Darwin series of states inside QD, as shown
schematically in Fig. 4.6 (b). Because there are 2 valleys, we obtain 1×2×3 = 6

degeneracy of �rst Q-point derived shell, 2× 2× 3 = 12 degeneracy for second
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etc. In Fig. 4.6 (c) we show that analogously to K - point derived states second
shell splits and we associate this e�ect again with topological e�ect as discussed
below.

Before we elucidate on new physics behind those states, let us discuss their ener-
getic position in di�erent TMD's. In MoS2, as shown in Fig. 4.4, Q-point derived
states are 21-st counting from ground state in QD with radius RQD = 10 nm
derived from K-point valley. One may argue, that because they are so high in
energy and so many electrons are necessary to probe them, they are uninter-
esting. However, we know from our own and other studies, that for tungsten
based TMD's WX2 energetic di�erence between K and Q points in CB is sig-
ni�cantly smaller than in Mo- based compounds (32 vs 230 meV, see Fig. 2.7).
Also, in tungsten based compounds band ordering between K and Q point re-
verses. Therefore, due to signi�cant spin splitting at K point (38 meV for WSe2)
for speci�c spin in chosen valley Q - point states may become the ground ones.
This e�ect can be further magni�ed by processes lowering Q point position in
CB with respect to K point position, e.g. strain as discussed in Introduction.

4.5 SU(3) "quarks" in TMD quantum dots

Let us focus for a moment on three Q-point derived states in one valley. One one
hand, triple degeneracy is not surprising in QD, e.g. third shell of 2D harmonic
oscillator is triply degenerate. However, those states can be distinguished by
angular momentum quantum number. In our case in MX2 crystals, even though
it is clear that triple degeneracy comes from existence of 3 Q-points surrounding
K - point, situation is di�erent, because 3 degenerate states are mixture of all
three valleys and have exactly the same angular momentum quantum number
L=0. It has been proposed in literature764 (for case of odd numbers of many-layer
TMD's) that such states are manifestation of so-called �avor SU(3) symmetry
and we call them "QD quarks". Such symmetry has been proposed in early
theories of up, down and strange quarks in high energy physics765,766 by Gell-
Mann. Interestingly, in high energy physics this symmetry is only approximate
due to di�erent masses of quarks, while in our case it should be an exact one.
We note that SU(3) symmetry is also associated with more widely used "color
charge" and it is tempting to associate some "valley color" and understand each
QD quark as mixture of all colors (property of all free particles in high energy
physics). Also, each Q-point derived QD quark state should be described by
some quantum number generalizing spin, analog of e.g. isospin. What is also
important, no electrons on such QD quark states and complete �lling of all of
them are both "QD quark vacuum state",764 suggesting analogy between "true
quantum" and "Dirac" vacua, which possibly are not equivalent in QD setup
due to electron - electron interactions. Qualitative and quantitative analysis how
far those analogies are correct and can be pushed forward will be subject of our
future studies. We note that study of those states may be interesting not only
from fundamental reasons, but also because of practical utilization of 3-state
analogs of qubits, i.e., "qutrit".764
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Figure 4.7: Internal splitting of shells of K- and Q- point derived QD states
shown in logarithmic scale. QD radius here is 30 nm.

4.6 Topological splitting of electronic shells

As already mentioned in Fig. 4.4 (d) consecutive n > 1 shells of both K -
point series and shells identi�ed as Q-point derived states (Fig. 4.6 (c) ) exhibit
internal structure. We observe that splitting within shells becomes larger with
increased shell number n, as shown in Fig. 4.7. As mentioned before, this e�ect
is not merely numerical one, but it is associated with topological properties of
MX2 crystals. Splitting within n > 1 shells can be understood, in analogy to
similar splittings when magnetic �eld is applied to 2D harmonic oscillator, as
result of "geometric �eld" (Berry's curvature) acting on states with non-zero
angular momentum L.708 We note that L states in +K valley split in opposite
direction than in -K due to sign reverse of Berry's curvature between +K and -K
valleys.430,545 Also, as shown in Fig. 4.7, shells associated with Q-point series
exhibit topological splitting that is an order of magnitude larger than those
associated with K-point series. Source of this e�ect and means of controlling
value of this splittings in TMD's will be subject of future studies. We note that
such topological splitting seems to in�uence also L = 0 states (e.g. splitting in
third shell of states with L = ±2 is not symmetric around L = 0 state), in
analogy to s-series topological splitting in excitonic series.5,551

To support our identi�cation of splitting within QD shells as e�ect of Berry's
curvature resulting from topological properties of wavefunctions, we studied sim-
plest toy model, i.e. Kane-Mele model of graphene, in which strength of Berry's
curvature is controlled by the band gap that can be opened in two topologically
non-equivalent ways: trivial gap opened by opposite on-site potential on A-B
atoms and topological gap opened by "toy-model" Kane-Mele spin-orbit cou-
pling. We present details of those calculations in Appendix 6.11. Here we quote
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Figure 4.8: (a) Schematic arrangement of spin-split K-point derived states
in QD when shell spacing ωK0 is larger than spin splitting ∆SOC . (b) Similar
scheme when ∆SOC dominates over shell splitting. (c-d) Corresponding schemes
of charging energies for two shell splitting regimes. In (c) addition of third elec-
tron to QD is dominated by ∆SOC and Coulomb energy U, while in (d) - by
shell splitting and U. Figure reproduced from Ref. 4.

only central result that when Berry's curvature is larger (gap is smaller), for two
di�erent QD's with the same inter-shell splitting (∆E1−2) we observe systemat-
ically larger intra-shell splittings (∆E2−2), proving inter-shell splitting directly
depends on Berry's curvature strength. We note that the same value of split-
ting is obtained for both topologically trivial and non-trivial phases, however we
note that scheme of splittings of states described by valley and L 6= 0 angular
momentum is di�erent. We note that e�ect of splitting of L 6= 0 states might be,
unfortunately, di�cult to measure experimentally due similar splitting induced
by deformation of QD potential, e.g. elliptical deformation.

4.7 Interplay of spin-orbit coupling and shell split-

ting

Finally, let us discuss how spin-orbit coupling modi�es shell splitting inside
MX2 quantum dots, focusing on K-point derived spectrum which is lowest in
molybdenum based TMD's. First, we note that spin arrangement of states in
+K and -K is opposite, as shown for lowest states in Fig. 4.8 (a-b). Value of
splitting between �rst two degenerate states and second pair of degenerate states
(Fig. 4.8 (a)) is controlled by value of splitting at K - point in CB. Due to size
quantization this value of splitting is smaller for smaller dots and reaches bulk
value only for very large QD's.4

In next step, we note that shell ordering of spin-split states depends heavily on
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interplay of ∆SOC and shell splitting ω0 controlled by QD size. For small dots
it is clear that ω0 > ∆SOC . In such situation, �rst states above lowest Kramers
dublet shown in Fig. 4.8 (a) are states from the same shell (n=1) split by SOC.
However, when inter-shell splitting becomes smaller, one can note di�erent shell
ordering. When dot is large, ∆SOC > ω0 and next states above lowest pair
are states from second shell (n=2, Fig. 4.8 (b)) with L 6= 0. Neglecting for a
moment order of magnitude smaller topological splitting of L = ± 1 states, one
can see that states above lowest pair are 4-fold degenerate, oppositely 2-fold
degeneracy when ω0 > ∆SOC . We note that those two regimes can be realized
by fabricating QD's with di�erent sizes. Possible experimental manifestation of
this e�ects is discussed in Fig. 4.8 (c-d), which shows schematically charging
spectrum767 of multi-electron QD's, which depending on ω0 and ∆SOC should
be controlled either by ∆SOC or ω, depending on size of QD.

We note also, that multi - electron QD's discussed in regime ω0 > ∆SOC have
interesting broken symmetry ground state.7 Due to the interplay of Ising-like
spin SOC and weak inter-valley exchange e�ects, as discussed for excitonic prop-
erties of TMD's in previos Chapter, one can tune ground state of dot between
inter-valley anti-ferromagnetic state with even number of electrons in +K and
-K valley derived states (and no spin polarization due to spin - reversal between
valleys) and spin- and valley- polarized state in which all electrons prefer to be
in one valley and have the same spin.167 Precise estimation of values of shell
splitting ω0 controlling transition between these two phases depends on SOC
value and number of electrons.7
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Chapter 5

Conclusions and plan for

future work

To sum up, in the following thesis I presented results of study of TMD semi-
conductors electronic and optical properties, focusing on simple, yet physically
well-motivated tight-binding approximation. In the �rst part I presented intro-
duction to vast literature on 2D systems, focusing on novel atomically thin MX2

(M=Mo, W, X=S, Se, Te) transition metal dichalcogenides in 2H phase. Those
fascinating materials, combining advances related to graphene with semicon-
ductor physics, are predicted to become more and more technology relevant.
It is crucial, therefore, to build theories that are on one hand physically sim-
ple, intuitive and numerically trackable, and quantitatively correct on the other
hand.

In the �rst Chapter presenting original results of this thesis, I presented mini-
mal, graphene-like tight-binding model built using understanding derived from
ab initio studies. This model simplicity comes from identi�cation of band sym-
metries in terms of orbitals and realization, that it is enough to take only metal
and dimer chalcogenide orbitals even with respect to metal plane to reliably de-
scribe bands around Fermi energy (valence and conduction bands). This model
allowed me to understand band gap opening physics within metal d-orbital
group, emergence of fundamental gap at K point and orbital quantum numbers
associated with VB and CB. It also pointed to the origin of secondary minima of
conduction band at Q points. Then I explained how existence of those Q points
is related to the band nesting phenomenon. Also, successive further simpli�ca-
tions of TB model to massive Dirac fermion and e�ective mass models has been
rigorously derived. Chapter was concluded with study of magnetic �eld e�ect
on electronic structure close to the K - point.

In next part of the thesis, I built a theory of correlated electron - hole pairs,
using interacting excitonic state language, that has many parallels with �eld-
theoretical ab initio + GW + Bethe-Salpeter method. I uncovered that main
di�erence between those methods lies in screening of electron-hole exchange in-

109



teraction. This method, in which signi�cant time and e�ort has to be devoted
to studying e�ect of wavefunctions on interaction form factors modeled using
tight-binding theory, allowed me to study �ne structure of excitonic spectrum in
numerically convergent way. This �ne structure, involving not only spin bright
and dark, but also excited excitonic states, helped me with understanding of
experimental results of my collaborators not only with respect to excitonic re-
sponse that I calculated quantitatively, but also with qualitative understanding
of spin arrangement in trion complexes in MoS2.

In last part of this thesis, I applied tight-binding model from Chapter 2 to
the problem of gate de�ned quantum dots. I was able to understand numerical
results of parabolic quantum dots in terms of simple picture of 2D harmonic os-
cillator states resulting from 2 valleys at K point and additional higher energy
spectrum resulting from existence of Q points. Then, I uncovered topological
reasons behind splitting of K and Q -point derived shells and discussed how
Q-point derived states can be understood in analogy with high energy physics
quarks, proposing "SU(3) �avor quantum dots" in TMD's monolayers in real-
istic setting. I concluded last Chapter with discussion of interplay of spin-orbit
interaction and shell spacing controlled by QD radius, a�ecting ladder of ground
states in those quantum dots.

Future plans to extend results presented in this thesis can be broken in 3 groups.
First, I plan to extend tight-binding model to include both even and odd orbitals,
which should open possibility to study not only monolayers, but also bilayers.
Those odd orbitals induce also interesting e�ect of mixing between bright and
dark exciton, activating optical response of grey excitons that are currently
under intense experimental study. Important step would be also to build and
implement theory of "GW-like" re-normalization of excited electrons and holes,
where converged calculations due to high localization of orbitals are a bottleneck
of ab initio plane wave methods.

Second group of problems I'm planning to develop is connected with understand-
ing properties of excitons with non-zero center-of-mass momentum Q. which
activated by phonons lead to rich "excitonic landscape". Also, larger optical
complexes like trions, biexcitons and charged biexcitons are of great interest
nowadays. Con�guration-interaction method presented in Chapter 3 can be, as
known from physics of many-body complexes in quantum dots, extended to deal
with such bound states. I plan also to understand more deeply how additional
carriers a�ect exciton states and study exciton - trion coupling dynamics by
phonons in a quantitative way.

Last group of problems I'm interested in is connected with �avor symmetry of
Q - point state, which studies are only at it's infancy. It is possible, in principle,
to imagine that out of those Q-point derived "QD quarks" one can construct
composite particles in analogy to particles in Standard Model. To do this, it is
crucial to understand Coulomb interactions between those states and how those
interactions a�ect analogy between quarks and QD states and how far those
analogies can be pushed forward. From the point of view of topological e�ects
in the electronic spectrum, I plan to perform further studies on topological
splitting, especial how it can be observed in realistic settings.
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Chapter 6

Appendix

6.1 Details of DFT calculations

Density functional theory is nowadays standard framework for investigating elec-
tronic properties of materials. We do not repeat density-functional theory due
con�ned space and many excellent expositions. All DFT calculations are per-
formed using Abinit 8.10.2 software768�772 installed on Compute Canada clusters
(Beluga, Cedar, Graham, Niagara). This code allows for �rst principles calcu-
lations of electronic properties of many body systems, using several standard
approximations within density functional theory framework. In our calculations
we consistently use PBE version of GGA773 exchange correlation potential. Be-
cause Abinit is 3D periodic code, we have to introduce vacuum between mono-
layers in study. We know from literature that 10 Å is enough co converge GGA
level calculation due to short range nature of interactions included (which is no
longer true if e.g. polarizability have to be calculated404). We take therefore 10
Å vacuum in all our calculations. Kinetic energy cut-o� is taken as 30 Ha ≈
816 eV (1 Ha = 27.2113845 eV). As standard PAW pseudo-potential method is
used to reduce computational complexity associated with core electrons, energy
cut-o� for FFT grids taken as 60 Ha. Calculations are performed on 12 x 12 x 1
k-point grids. In �rst step of the calculations atomic positions are relaxed using
Broyden�Fletcher�Goldfarb�Shanno algorithm with stopping criterion of max-
imal force set to 10−5 Ha/Bohr. In next step both unit cell and atom positions
are relaxed, keeping z-th component of unit cell �xed (we do not relax vacuum
between periodic images of monolayers). When band structure calculations are
performed, criterion when total energy di�erence between self-consistent steps
is converged was set to 10−10 Ha.
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6.2 Localized Slater - like atomic orbitals

Through this work Slater-like localized orbitals ϕαµ are used in the form

ϕαµ (~r) = Rn(r)YL,µ(θ, φ) (6.1)

where radial function is approximated as

Rn =
(2ζnLm)n+ 1

2√
(2n)!

rn−1e−ζnLm·r (6.2)

where ζnLm Slater parameters are taken for isolated atom model.744,745 Spher-
ical harmonics are given by standard expression

YLµ =

√
2L+ 1

4π

(L−m)!

(L+m)!
PmL (cos θ)eimφ (6.3)

where PmL are associated Legendre polynomials with Condon-Shortley phase
(−1)m inside them. For α = 1 we have Mo atom with L = 2, µ ∈ {−2, 0,+2}
and for α = 2 we have S2 top and bottom atoms with L = 1, µ ∈ {−1, 0,+1}.
We note that ζ parameters are detached from values of Slater - Koster integrals,
as usually assumed.

Now let us discuss how we use these orbitals in the tight-binding model. For
d orbitals of metals situation is clear, namely orbital with given L and m is
centered around atom center. On the other hand, orbital construction for two
chalcogen atoms can be done di�erently. We de�ne so-called dimer orbitals, that
are centered around the same plane as metal atoms. Therefore, this construction
has to be performed with care. We begin with upper (U) and lower (L) p-orbitals
with quantum numbers L = 1, m = ±1 φ and de�ne dimer orbital ϕ as proper
combination of those two:

ϕL=1,mp=±1(~r) =
1√
2

[
ϕUL=1,mp=±1(~r − ~RupS ) + ϕLL=1,mp=±1(~r −RdownS )

]
(6.4)

For L = 1, m = 0, due to the nodal structure of pz orbitals, dimer has to be
symmetric with respect to z inversion. This can be achieved by changing sign
of one of the orbitals (we choose to change sign of the bottom one):

ϕL=1,mp=±0(~r) =
1√
2

[
ϕUL=1,mp=0(~r)− ϕLL=1,mp=0(~r)

]
. (6.5)

Projections of DFT wavefunctions in form

ψσn(~k, ~r) =
∑
σ

∑
~G<|Gcutoff |

cσn(~k, ~G)ei(
~k+~G)·~r (6.6)

are performed inside spheres around M and X atoms, as described in Subsection
2.1.3 "Analysis of orbital composition". We note that to obtain overlap integral∫∫∫

S3 d
3rψ∗DFTψTB both wavefunctions are normalized to give 1 inside spheres

due to localized nature of Slater orbitals and general lack of numerical normal-
ization of DFT wavefunctions inside Abinit.
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6.3 Summary of DFT results on di�erent MX2

crystals

In the following Appendix we collect additional results of DFT calculations of
MX2 crystals. First, we present in Fig. 6.1, that similarly to MoS2, for WSe2

conduction and valence bands are built from even orbitals with respect to tung-
sten plane. Additionally, projection of Kohn-Sham wavefunctions onto localized
orbitals con�rms trend that 3 upper symmetric bands are mainly composed of
W - orbitals and 3 lower bands - from Se2 dimers. Bottom of CB at K point is
composed mainly from metal orbitals, just as for MoS2, while second minimum
in CB and both maxima in VB are constructed from combinations of orbitals
on both sublattices.

Figure 6.1: Color-mapped localization of a given k-resolved eigenenergy on W and Se2
spheres and symmetry of eigenvalues across Brillouin zone. Circles (crossed rectangles) denote
symmetric (anti-symmetric) orbitals with respect to metal plane. Compare with Fig. 2.4.

Next, in Fig. 6.2 we show orbital-resolved decomposition, similarly to result
presented in Fig. 2.5. Let us note �rst that our method of projection clearly
captures the fact that largest overlaps are coming from 4d and 3p orbitals for
MoS2, while 5d and 4p for WSe2. We con�rm that all coupling rules (e.g. d0

and p−1 in CB at +K point) for even orbitals are the same as for MoS2. These
results support conclusion that our TB Hamiltonian is well suited to describe
MX2 family of semiconductors in 2H phase.

In the third step we present collected results of gaps between spin-split extrema
of valence and conduction bands, as shown in Fig. 2.6. Those results are sum-
marized in Table 6.1.
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Figure 6.2: Collected symmetric contributions to bands in WSe2.

6.4 Details of NN and NNN TBHamiltonian deriva-

tion

Now we discuss details of tight-binding model derivation. First we introduce
notion of directional cosines de�ned as (l,m, n) =

(
dx
d ,

dy
d ,

dz
d

)
, where ~d =

(dx, dy, dz) denotes bond from metal to chalcogen atom and d = |~d| is distance
between two atoms, which can be written as d =

√
d2
⊥ + d2

‖. For three chalcogen

dimers (j = 1, 2, 3) surrounding central metal atom we have therefore:

l1 =
d‖

d
,m1 = 0, n1 = ±d⊥

d

l2 = −
d‖

2d
,m2 =

√
3d‖

2d
, n2 = ±d⊥

d

l3 =
d‖

2d
,m3 = −

√
3d‖

2d
, n3 = ±d⊥

d

(6.7)
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energy di�erence MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

∆SOC
V B 148 186 218 435 473 498

∆SOC
CB 3 21 32 30 38 58

∆SOC
K−Γ 65 351 544 255 520 655

∆SOC
K−Q 227 143 159 94 30 155

Table 6.1: Absolute values of gaps between spin-split extrema of valence and
conduction bands calculated using DFT + SOC. All values are given in meV.

where for all z-th directional cosines n plus sign is for upper chalcogen in dimer,
and minus sign for lower one.

Next we discuss linear transformation between complex and real spherical har-
monics. Because basis we work in is de�ned via orbitals with well de�ned L
and m quantum numbers, to use Slater - Koster rules we have to express those
orbitals in terms of real harmonics. Let us introduce for convenience notation

ϕL=2,md ≡ |dmd〉, ϕL=1,mp ≡ |pmp〉. (6.8)

This mapping we need is de�ned for d - orbitals in the following way:

|dmd=−2〉 =
1√
2

(
|dx2−y2〉 − i|dxy〉

)
,

|dmd=0〉 = |d3z2−r2〉,

|dmd=2〉 =
1√
2

(
|dx2−y2〉+ i|dxy〉

)
.

(6.9)

For p orbitals analogous relation yields

|pmp=−1〉 =
1√
2

(|px〉 − i|py〉) ,

|pmp=0〉 = |pz〉,

|pmp=1〉 = − 1√
2

(|px〉+ i|py〉) .

(6.10)

Necessary Slater-Koster rules for two - center energy integrals, depending on
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directional cosines are18

〈d3z2−r2 |V |px〉 = −1

2
l
[(

3n2 − 1
)
Vdpσ − 2

√
3n2Vdpπ

]
,

〈d3z2−r2 |V |py〉 = −1

2
m
[(

3n2 − 1
)
Vdpσ − 2

√
3n2Vdpπ

]
,

〈d3z2−r2 |V |px〉 = −1

2
n
[(

3n2 − 1
)
Vdpσ − 2

√
3
(
n2 − 1

)
Vdpπ

]
,

〈dx2−y2 |V |px〉 = −1

2
l
[√

3
(
l2 −m2

)
Vdpσ + 2

(
2m2 + n2

)
Vdpπ

]
,

〈dx2−y2 |V |py〉 = −1

2
m
[√

3
(
l2 −m2

)
Vdpσ − 2

(
2l2 + n2

)
Vdpπ

]
,

〈dx2−y2 |V |pz〉 = −1

2
n
(
l2 −m2

) [√
3Vdpσ − 2Vdpπ

]
,

〈dxy|V |px〉 = −m
[
l2
(√

3Vdpσ − 2Vdpπ

)
+ Vdpπ

]
,

〈dxy|V |py〉 = −l
[
m2
(√

3Vdpσ − 2Vdpπ

)
+ Vdpπ

]
,

〈dxy|V |pz〉 = −lmn
[√

3Vdpσ − 2Vdpπ

]

(6.11)

In next step those rules can be used to calculate rules for complex orbitals, e.g.
for L = 2,md = −2 to L = 1,mp = −1 element we have, remembering about

dimer construction |pmp=−1〉 = 1/
√

2
(
|pUmp=−1〉+ |pLmp=−1〉

)
:

〈dmd=−2|V |pmp=−1〉 =
1√
2

[
〈dx2−y2 |V |pmp=−1〉+ i〈dxy|V |pmp=−1〉

]
=

1

2

[
〈dx2−y2 |V |pUmp=−1〉+ 〈dx2−y2 |V |pLmp=−1〉+ i〈dxy|V |pUmp=−1〉+ i〈dxy|V |pLmp=−1〉

]
=

1

2
√

2

[
〈dx2−y2 |V |pUx 〉 − i〈dx2−y2 |V |pUy 〉+ 〈dx2−y2 |V |pLx 〉 − i〈dx2−y2 |V |pLy 〉+

i〈dxy|V |pUx 〉+ 〈dxy|V |pUy 〉+ i〈dxy|V |pLx 〉+ 〈dxy|V |pLy 〉
]

=

l + im√
2

[√
3

2
Vdpσ

(
d2
⊥
d2
− 1

)
− Vdpπ

(
d2
⊥
d2

+ 1

)]
(6.12)

Using the same rules rest of the remaining hopping matrix elements can be
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evaluated:

〈dmd=−2|V |pmp=0〉 = − (l + im)2

2

d⊥
d

[√
3Vdpσ − 2Vdpπ

]
,

〈dmd=−2|V |pmp=1〉 = − (l + im)
3

√
2

[√
3

2
Vdpσ − Vdpπ

]
,

〈dmd=0|V |pmp=−1〉 = − l − im
2

[(
3
d2
⊥
d2
− 1

)
Vdpσ − 2

√
3
d2
⊥
d2
Vdpπ

]
,

〈dmd=0|V |pmp=0〉 = − 1√
2

d⊥
d

[(
3
d2
⊥
d2
− 1

)
Vdpσ − 2

√
3

(
d2
⊥
d2
− 1

)
Vdpπ

]
,

〈dmd=0|V |pmp=1〉 = − l + im

2

[(
3
d2
⊥
d2
− 1

)
Vdpσ − 2

√
3
d2
⊥
d2
Vdpπ

]
,

〈dmd=2|V |pmp=−1〉 = − (l − im)
3

√
2

[√
3

2
Vdpσ − Vdpπ

]
,

〈dmd=2|V |pmp=0〉 = − (l − im)
2

2

d⊥
d

[√
3Vdpσ − 2Vdpπ

]
,

〈dmd=2|V |pmp=1〉 =
l − im√

2

[√
3

2
Vdpσ

(
d2
⊥
d2
− 1

)
− Vdpπ

(
d2
⊥
d2

+ 1

)]
.

(6.13)

Final step to obtain Hamiltonian matrix element is evaluation of matrix elements
between Bloch sums:

〈Ψ~k
A,m

d
|Ĥ|Ψ~k

B,mp
〉 =

1

NUC

NUC∑
i=1

NUC∑
j=1

ei
~k·(~RB,i−~RA,j)〈dmd

(
~RA,j

)
|Ĥ|pmp

(
~RB,i

)
〉,

(6.14)
where notation

|dmd
(
~RA,j

)
〉 = ϕL=2,md

(
~r − ~RA,j

)
|pmp

(
~RB,i

)
〉 = ϕL=1,mp

(
~r − ~RB,i

) (6.15)

has been introduced. Applying usual two-center approximation and keeping only
three nearest-neighbor chalcogen dimers we end up with expression

〈Ψ~k
A,m

d
|Ĥ|Ψ~k

B,mp
〉 ≈

3∑
j=1

ei
~k·~RB,i〈dmd |V |pmp

(
~RB,i

)
〉, (6.16)

Let us evaluate one full, k - dependent tunneling matrix element

〈Ψ~k
A,m

d
=−2|Ĥ|Ψ

~k
B,mp=−1〉 =

3∑
j=1

ei
~k·~Rj (lj + imj)√

2

[√
3

2
Vdpσ

(
d2
⊥
d2
− 1

)
− Vdpπ

(
d2
⊥
d2

+ 1

)]
.

(6.17)

For nearest chalcogen dimer positions we have (see Fig. 1.1) ~RB1 =
(
d‖, 0

)
,

~RB2
=
(
−d‖/2,

√
3d‖/2

)
, ~RB3

=
(
−d‖/2,−

√
3d‖/2

)
, which give l1 + im1 =
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ei0
d‖
d , l2 + im2 = ei

2π
3
d‖
d , l3 + im3 = ei

4π
3
d‖
d , respectively. Noting that prefactors

depending on Slater - Koster parameters are j - independent, we can �nally
write matrix element as

〈Ψ~k
A,m

d
=−2|Ĥ|Ψ

~k
B,mp=−1〉 =

1√
2

d‖

d

[√
3

2
Vdpσ

(
d2
⊥
d2
− 1

)
− Vdpπ

(
d2
⊥
d2

+ 1

)]
︸ ︷︷ ︸

V1

·

[
eikxd‖ + e−ikxd‖/2ei

√
3kyd‖/2ei2π/3 + e−ikxd‖/2ei

√
3kyd‖/2ei4π/3

]
︸ ︷︷ ︸

f−1(~k)

.

(6.18)

We note that this complicated expression can be written in terms of k-dependent
function f(~k) and functions V which depend on Slater-Koster integrals and
structural parameters. Using this approach, rest of the matrix elements can be
expressed as

〈Ψ~k
A,m

d
=−2|Ĥ|Ψ

~k
B,mp=0〉 = −V2f0

(
~k
)
,

〈Ψ~k
A,m

d
=−2|Ĥ|Ψ

~k
B,mp=1〉 = V3f1

(
~k
)
,

〈Ψ~k
A,m

d
=0|Ĥ|Ψ

~k
B,mp=−1〉 = −V4f0

(
~k
)
,

〈Ψ~k
A,m

d
=0|Ĥ|Ψ

~k
B,mp=0〉 = −V5f1

(
~k
)
,

〈Ψ~k
A,m

d
=0|Ĥ|Ψ

~k
B,mp=1〉 = −V4f−1

(
~k
)
,

〈Ψ~k
A,m

d
=2|Ĥ|Ψ

~k
B,mp=−1〉 = −V3f1

(
~k
)
,

〈Ψ~k
A,m

d
=2|Ĥ|Ψ

~k
B,mp=0〉 = −V2f−1

(
~k
)
,

〈Ψ~k
A,m

d
=2|Ĥ|Ψ

~k
B,mp=1〉 = V1f0

(
~k
)
,

(6.19)

where

f−1

(
~k
)

=
[
eikxd‖ + e−ikxd‖/2ei

√
3kyd‖/2ei2π/3 + e−ikxd‖/2ei

√
3kyd‖/2ei4π/3

]
,

f0

(
~k
)

=
[
eikxd‖ + e−ikxd‖/2ei

√
3kyd‖/2e−i2π/3 + e−ikxd‖/2e−i

√
3kyd‖/2ei2π/3

]
,

f1

(
~k
)

=
[
eikxd‖ + e−ikxd‖/2ei

√
3kyd‖/2 + e−ikxd‖/2e−i

√
3kyd‖/2

]
,

(6.20)
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and k-independent elements are given by:

V1 =
1√
2

d‖

d

[√
3

2

(
d2
⊥
d2
− 1

)
Vdpσ −

(
d2
⊥
d2

+ 1

)
Vdpπ

]
,

V2 =
1

2

d⊥
d

(
d‖

d

)2 [√
3Vdpσ − 2Vdpπ

]
,

V3 =
1√
2

(
d‖

d

)3
[√

3

2
Vdpσ − Vdpπ

]
,

V4 =
1

2

d‖

d

[(
3
d2
⊥
d2
− 1

)
Vdpσ − 2

√
3
d2
⊥
d2
Vdpπ

]
,

V5 =
1

2

d⊥
d

[(
3
d2
⊥
d2
− 1

)
Vdpσ − 2

√
3

(
d2
⊥
d2
− 1

)
Vdpπ

]

(6.21)

Final form of nearest - neighbor tight-binding Hamiltonian reads:

H
(
~k
)

=



Em
d

=−2 0 0 V1f−1(~k) −V2f0(~k) V3f1(~k)

Em
d

=0 0 −V4f0(~k) −V5f1(~k) V4f−1(~k)

Em
d

=2 −V3f1(~k) −V2f−1(~k) −V1f0(~k)

Emp=−1 0 0

Emp=0 0

Emp=1


(6.22)

Motivated by failure of the nearest neighbor tight-binding Hamiltonian do de-
scribe properly bands around Fermi level, we turn to derivation of next-nearest
neighbor hopping elements. As one can see in Fig. 2.1, central metal atom has
six next - nearest neighbor metal atoms in positions RA1

−RA6
. For next nearest

neighbors we introduce new notation for directional cosines (l2,m2, n2), not to
be confused with index 2 for (l,m, n) for atom at position RB2

. Analogously
to �rst NN model derivation, we begin with listing Slater - Koster rules for
two-center integrals between d orbitals:18

〈d3z2−r2 |V |d3z2−r2 〉 =

(
1

2
l22 +

1

2
m2

2 − n2
2

)2

Vddσ + 3n2
2

(
1− n2

2

)
Vddπ +

3

4

(
n2

2 − 1
)2
Vddδ,

〈d3z2−r2 |V |dx2−y2 〉 =

√
3

4

(
l22 −m2

2

) [(
3n2

2 − 1
)
Vddσ − 4n2

2Vddπ +
(
n2

2 + 1
)
Vddδ

]
,

〈d3z2−r2 |V |dxy〉 =

√
3

2
l2m2

[(
3n2

2 − 1
)
Vddσ − 4n2

2Vddπ +
(
n2

2 + 1
)
Vddδ

]
,

〈dx2−y2 |V |dx2−y2 〉 =
3

4

(
l22 −m2

2

)
Vddσ +

[
l22 +m2

2 −
(
l22 −m2

2

)2]
Vddπ +

[
1

4

(
l22 −m2

2

)
n2

2

]
Vddδ,

〈dx2−y2 |V |dxy〉 =
1

2
l2m2

(
l22 −m2

2

)
[3Vddσ − 4Vddπ + Vddδ] ,

〈dxy |V |dxy〉 = 3l22m
2
2Vddσ +

(
l22m

2
2 − 4l22m

2
2

)
Vddπ +

(
l22m

2
2 + n2

2

)
Vddδ

(6.23)
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Rules for p-orbitals are:

〈px|V |px〉 = l22Vppσ +
(
1− l22

)
Vppπ,

〈px|V |py〉 = l2m2 (Vppσ − Vppπ) ,

〈px|V |pz〉 = l2n2 (Vppσ − Vppπ) ,

〈py|V |py〉 = m2
2Vppσ +

(
1−m2

2

)
Vppπ,

〈py|V |pz〉 = m2n2 (Vppσ − Vppπ) ,

〈pz|V |pz〉 = n2
2Vppσ +

(
1− n2

2

)
Vppπ.

(6.24)

Using above formulas we get for complex orbitals:

〈dmd=−2|V |dmd=−2〉 =
1

2

(
〈dx2−y2 |+ i〈dxy|

)
V
(
|dx2+y2〉 − i|dxy〉

)
=

=
1

8
(3Vddσ + 4Vddπ + Vddδ)

(6.25)

Remaining hopping elements read:

〈dmd=−2|V |dmd=0〉 = −
√

3

4
√

2
(l2 + im2)

2
[Vddσ − Vddδ] ,

〈dmd=−2|V |dmd=2〉 =
1

8
(l2 + im2)

4
[3Vddσ − 4Vddπ + Vddδ] ,

〈dmd=0|V |dmd=0〉 =
1

4
Vddσ +

3

4
Vddδ,

〈dmd=0|V |dmd=2〉 = −
√

3

4
√

2
(l2 + im2)

2
[Vddσ − Vddδ] ,

〈dmd=−2|V |dmd=2〉 =
1

8
(l2 + im2)

4
(3Vddσ − 4Vddπ + Vddδ)

(6.26)

Before we list similar hopping elements for chalcogen dimers, we note that we
neglect in next - nearest interaction cross terms of interaction between top and
bottom chalcogens, keeping only terms that are within the same plane (top-top,
bottom-bottom). In this approximation hopping elements yield:

〈pm1=−1|V |pmp=−1〉 =
1

2
(Vppσ + Vppπ) ,

〈pm1=−1|V |pmp=0〉 = 0,

〈pm1=−1|V |pmp=1〉 =
1

2
(l2 + im2)

2
(Vppσ − Vppπ) ,

〈pm1=0|V |pmp=0〉 = Vppπ,

〈pm1=0|V |pmp=1〉 = 0,

〈pm1=1|V |pmp=1〉 =
1

2
(Vppσ + Vppπ) .

(6.27)

Remembering that because metal atoms are in the same plane and we neglected
top-bottom chalcogen interactions, we always have n2 = 0, which results also in
l22 +m2

2 = 1. Using this we can obtain for second nearest neighbor TB Hamilto-
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nian matrix elements:

〈Ψ~k
A,m

d
=−2|Ĥ|Ψ

~k
A,m

d
=−2〉 = Ed=−2 +W1g0

(
~k
)
,

〈Ψ~k
A,m

d
=−2|Ĥ|Ψ

~k
A,m

d
=0〉 = W3g2

(
~k
)
,

〈Ψ~k
A,m

d
=−2|Ĥ|Ψ

~k
A,m

d
=2〉 = W4g4

(
~k
)
,

〈Ψ~k
A,m

d
=0|Ĥ|Ψ

~k
A,m

d
=0〉 = Ed=0 +W2g0

(
~k
)
,

〈Ψ~k
A,m

d
=0|Ĥ|Ψ

~k
A,m

d
=2〉 = W3g2

(
~k
)
,

〈Ψ~k
A,m

d
=2|Ĥ|Ψ

~k
A,m

d
=2〉 = Ed=2 +W1g0

(
~k
)
,

〈Ψ~k
B,mp=−1|Ĥ|Ψ

~k
B,mp=−1〉 = Ep=−1 +W5g0

(
~k
)
,

〈Ψ~k
B,mp=−1|Ĥ|Ψ

~k
B,mp=0〉 = 0,

〈Ψ~k
B,mp=−1|Ĥ|Ψ

~k
B,mp=1〉 = W7g2

(
~k
)
,

〈Ψ~k
B,mp=0|Ĥ|Ψ

~k
B,mp=0〉 = Ep=0 +W6g0

(
~k
)
,

〈Ψ~k
B,mp=0|Ĥ|Ψ

~k
B,mp=1〉 = 0,

〈Ψ~k
B,mp=1|Ĥ|Ψ

~k
B,mp=1〉 = Ep=1 +W5g0

(
~k
)
.

(6.28)

Functions Wi, which are independent of ~k, are given by:

W1 =
1

8
(3Vddσ + 4Vddπ + Vddδ) ,

W2 =
1

4
(Vddσ + 3Vddδ) ,

W3 = −
√

3

4
√

2
(Vddσ − Vddδ) ,

W4 =
1

8
(3Vddσ − 4Vddπ + Vddδ) ,

W5 =
1

2
(Vppσ + Vppπ) ,

W6 = Vppπ,

W7 =
1

2
(Vppσ − Vppπ) .

(6.29)

k-dependent g
(
~k
)
functions can be expressed as:

g0

(
~k
)

= 4 cos

(
3

2
kxd‖

)
cos

(√
3

2
kyd‖

)
+ 2 cos

(√
3kyd‖

)
,

g2

(
~k
)

= 2 cos

(
3

2
kxd‖ +

√
3

2
kyd‖

)
ei
π
3 + 2 cos

(
3

2
kxd‖ −

√
3

2
kyd‖

)
e−i

π
3 − 2 cos

(√
3kyd‖

)
,

g4

(
~k
)

= 2 cos

(
3

2
kxd‖ +

√
3

2
kyd‖

)
ei

2π
3 + 2 cos

(
3

2
kxd‖ −

√
3

2
kyd‖

)
e−i

2π
3 + 2 cos

(√
3kyd‖

)
(6.30)
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The �nal Hamiltonian matrix is given by:

H
(
~k
)

=



Em
d
=−2

+W1g0(~k)
W3g2(~k) W4g4(~k) V1f−1(~k) −V2f0(~k) V3f1(~k)
Em

d
=0

+W2g0(~k)
W3g2(~k) −V4f0(~k) −V5f1(~k) V4f−1(~k)
Em

d
=2

+W1g0(~k)
−V3f1(~k) −V2f−1(~k) −V1f0(~k)
Emp=−1

+W5g0(~k)
0 −W7g2(~k)

Emp=0

+W6g0(~k)
0

Emp=1

+W5g0(~k)


(6.31)

6.5 Slater-Koster parameters for best VB and

CB with SOC

In the following Appendix we list SK parameters for �t presented in Fig. 2.10. In
Fig. 6.3, presenting same information as Fig. 2.10, we zoom into two conduction
bands and valence band on the left and right panels, respectively.

parameter best CB best VB
Em

d
=0,±2 0.0086 -0.0124

Emp=±1 -2.6743 -1.8464
Emp=0 -2.8824 -3.4268
Vdpσ -2.4255 2.4894
Vdpπ 1.0283 -0.9028
Vddσ -0.9230 -1.0190
Vddπ 0.0595 0.7564
Vddδ 0.0367 0.2077
Vppσ 1.3672 0.6881
Vppπ -0.0777 -0.1977

Table 6.2: Slater-Koster parameters �tted to DFT MoS2 bandstructure tailored
for best reproduction of CB and VB with SOC. For both �ts we use λMo =

0.148/2 eV and λS2 = 0.03/2 eV. All values in table are given in eV.

6.6 Orbital Zeeman splitting in TB model

In the following Appendix we are interested in evaluating orbital Zeeman matrix
element H2 in the form

∆En(K) = 〈Ψn (K) | L̂z
h̄
|Ψn (K)〉µBBz, (6.32)

where n is band (CB or VB). To do that, we �rst consider arbitrary matrix
element between sublattice Bloch wavefunctions, constructed from localized or-
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Figure 6.3: Zoom into CB and VB + SOC bandstructure �tted separately using
TB+SOC model.

bitals with speci�c quantum numbers L, m

Ψm
A

(
~k, ~r
)

=
1√
NUC

NUC∑
i=1

ei
~k·~RA,iϕm

(
~r − ~RA,i

)
,

Ψl
B

(
~k,~r
)

=
1√
NUC

NUC∑
j=1

ei
~k·~RB,jϕl

(
~r − ~RB,j

)
.

(6.33)

For orbital angular momentum operator de�ned as Lz = −ih̄
(
~r × ~∇~r

)
z
and

introducing ~RAB = ~RA,i − ~RB,j our matrix element yields

− ih̄〈Ψl
B

(
~k,~r
)
|
(
~r × ~∇~r

)
z
|Ψm
A

(
~k, ~r
)
〉 =

=
−ih̄
NUC

NUC∑
i,j=1

∫
R3

d~rei
~k·~RABϕ∗l

(
~r − ~RB,j

)(
~r × ~∇~r

)
z
ϕm

(
~r − ~RA,i

)
.

(6.34)

In next step we introduce new vector ~ui describing coordinates around given
~RA/B,i atomic center as

~ui = ~r − ~RA,i → ~r = ~ui + ~RA,i → d~r = d~ui. (6.35)

This allows us to write how Lz acts on orbital ϕ

− ih̄
(
~r × ∂

∂~r

)
z

ϕm

(
~r − ~RA,i

)
= −ih̄

(~ui + ~RA,i

)
× ∂

∂~ui

∂~ui
∂r︸︷︷︸
=1


z

ϕm (~ui) ,

= −ih̄
(
~ui ×

∂

∂~ui

)
z︸ ︷︷ ︸

Lz

ϕm (~ui) +

~RA,i × (−ih̄)
∂

∂~ui︸ ︷︷ ︸
~pui


z

ϕm (~ui) ,

= mϕm (~ui) +
(
~RA,i × ~pui

)
z
ϕm (~ui) .

(6.36)
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Knowing how Lz operator acts on orbital, using previously de�ned ui, ~r− ~RB,j =

~ui + ~RA,i − ~RB,j = ~ui + ~RAB and changing summation over i, j to ~RAB , ~RA we
obtain

− ih̄〈Ψl
B

(
~k, ~r
)
|
(
~r × ~∇~r

)
z
|Ψm
A

(
~k,~r
)
〉

=
m

NUC

NUC∑
~RAB , ~RA

∫
d~uei

~k·~RAB ϕ∗l

(
~u+ ~RAB

)
ϕm (~u)︸ ︷︷ ︸

6=0 only for ~RAB=0

+

−ih̄
NUC

Nuc∑
~RAB , ~RA

∫
d~uei

~k·~RABϕ∗l

(
~u+ ~RAB

)(
~RA × ~pu

)
z
ϕm (~u)

=
m

NUC

NUC∑
~RA

∫
d~uϕ∗l (~u)ϕm (~u)︸ ︷︷ ︸

=δlm

+

−ih̄
NUC

NUC∑
~RA

~RA ×
NUC∑
~RAB

ei
~k·~RAB

∫
d~uϕ∗l

(
~u+ ~RAB

)
· ~puiϕm (~u)

︸ ︷︷ ︸
~RA independent


z

= mδlm + 0,

(6.37)

where second term vanished due to summation ~RA over isotropic system.

Remembering that at K point in conduction band Bloch wavefunction is con-
structed mostly from orbitals with symmetry md = 0 and mp = −1. This is re-
produced by solution of TB Hamiltonian ĤTB ν̄i = Eiν̄i, where ν̄i describes vec-
tor of TB coe�cients corresponding to choice of basis in Eq. (2.3) (md = 0↔ ν2,
mp = −1↔ ν4). We can write therefore simpli�ed Bloch wavefunction as

ΨCB (K,~r) ≈ νCB2

1√
NUC

NUC∑
i=1

ei
~K·~Ra,iϕl=2,m=0

(
~r − ~RA,i

)
︸ ︷︷ ︸

Ψm=0
CB,A,K(~r)

+

+ vCB4

1√
NUC

NUC∑
i=1

ei
~K·~RB,iϕl=1,m=−1

(
~r − ~RB,i

)
︸ ︷︷ ︸

Ψm=−1
CB,B,K(~r)

.

(6.38)

Final matrix element of L̂z operator in CB at K point is therefore

〈ΨCB

(
~K
)
|Lz|ΨCB

(
~K
)
〉 =[

νCB∗2 〈Ψm=0
CB,A,K |+ νCB∗4 〈ψm=−1

CB,B,K |
]
L̂z

[
νCB2 |Ψm=0

CB,A,K〉+ νCB4 |Ψm=−1
CB,B,K〉

]
=∣∣νCB2

∣∣2 · 0 + νCB∗2 νCB4 · 0 + νCB∗4 νCB2 · 0 +
∣∣νCB4

∣∣2 · (−1) =

(−1)
∣∣νCB4

∣∣2 .
(6.39)
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Analogous calculation for valence band yields

〈ΨV B

(
~K
)
|Lz|ΨV B

(
~K
)
〉 = 2 ·

∣∣νV B3

∣∣2 + 1 ·
∣∣νV B6

∣∣2 . (6.40)

6.7 Analytically solvable excitonic problem

In this Appendix we study analytically solvable, hydrogen-like model of exciton
in 2D. We consider optically excited electron, which leaves empty state be-
hind, which we call "hole". Assuming positive electron and hole e�ective masses
m∗e,m

∗
h > 0 of carriers with parabolic dispersion approximation, we can write

energies of carriers as

Ee = Ec +
h̄2k2

e

2m∗e
,

Eh = Ev −
h̄2k2

h

2m∗h
,

(6.41)

where electron (hole) wavevector is de�ned by

~ke(h) = −i~∇e(h) = −i
(

∂

∂xe(h)
,

∂

∂ye(h)

)
. (6.42)

Ev and Ec are valence and conduction band edges, respectively. We de�ne band
gap as ∆GAP = Ec − Ev. Exciton Hamiltonian in real space yields

ĤX = Ec +
h̄2k2

e

2m∗e
−
(
Ev −

h̄2k2
h

2m∗h

)
+

(+e)(−e)
4πε0εstat.r |~re − ~rh|

, (6.43)

where ε0 is vacuum permittivity, εstat.r describes static screening of a given
materials (we consider generic semiconductor here) and ~re, ~rh describe positions
of electron and hole with charges (+e) and (-e). Introducing ε = 4πε0ε

stat.
r and

using de�nition of ~ke(h) we obtain

ĤX = ∆GAP −
h̄2~∇2

e

2m∗e
− h̄2~∇2

h

2m∗h
− e2

ε |~re − ~rh|
. (6.44)

In next step, we want to transform problem in Eq. (6.44) to relative coordinates.
We do this by introducing new variables describing relative motion of electron
hole pair ~r = ~re − ~rh and center-of-mass motion ~R =

~rem
∗
e+~rhm

∗
h

m∗e+m∗h
. Using chain

rule we can write for derivatives

∂

∂r
=

∂

∂re

∂re
∂r

+
∂

∂rh

∂rh
∂r

=
m∗h

m∗e +m∗h

∂

∂re
− m∗e
m∗e +m∗h

∂

∂rh
,

∂

∂R
=

∂

∂re

∂re
∂R

+
∂

∂rh

∂rh
∂R

=
∂

∂re
+

∂

∂rh
.

(6.45)

Inverse relations, expressing old coordinates and derivatives in terms of new

125



ones are given by

~re =
m∗h

m∗e +m∗h
r +R,

~rh = − m∗e
m∗e +m∗h

r +R,

∂

∂re
=

∂

∂r
+

m∗e
m∗e = m∗h

∂

∂R
,

∂

∂rh
= − ∂

∂r
+

m∗h
m∗e +m∗h

∂

∂R
.

(6.46)

Introducing totalM = m∗e +m∗h and reduced µ = (1/m∗e + 1/m∗h)
−1 masses, we

can write excitonic Hamiltonian as

ĤX = ∆GAP −
h̄2∇2

R

2M
− h̄2∇2

r

2µ
− e2

εr
. (6.47)

We can note that because now interaction doesn't mix relative and center-
of-mass motions, we can factorize our excitonic wavefunction to free particle
movement with wavevector ~Q and relative motion

Ψn

(
~r, ~R

)
= ei

~Q·~Rϕn (r) , (6.48)

which is a solution of eigenproblem

ĤXΨn

(
~r, ~R

)
= EnΨn

(
~r, ~R

)
. (6.49)

Substituting Eq. (6.47) and Eq. (6.48) into Eq. (6.49) and acting with ~∇R
operator we obtain

ei
~Q·~R
[
h̄2Q2

2M
− h̄2∇2

r

2µ
− e2

εr

]
ϕn(r) = ei

~Q·~R (En −∆GAP )ϕn(r) (6.50)

Introducing new "reference" energy EQn = En −∆GAP − h̄2Q2

2M we get[
− h̄

2∇2
r

2µ
− e2

εr

]
ϕn(r) = EQn ϕn(r) (6.51)

Problem de�ned in Eq. (6.51) can be solved using di�erent methods. First lets us
show method to get eigenvalues by transforming to parabolic coordinate system
u, v,774 e.g., x = 1

2

(
u2 − v2

)
and y = u · v. Then, for operators occurring in Eq.

(6.61) we get

1

r
=

1√
x2 + y2

=
2

u2 + v2
,

∂2

∂x2
+

∂2

∂y2
=

1

u2 + v2

(
∂2

∂u2
+

∂2

∂v2

)
,

(6.52)

and Eq. (6.51) takes the form[
1

u2 + v2

p2
u + p2

v

2µ
− 2

u2 + v2

e2

ε

]
ϕn(u, v) = EQn ϕn(u, v). (6.53)
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Rearranging terms and aiming for the form of equation similar to 2D quantum
harmonic oscillator we getp2

u + p2
v

2µ
+

1

2
µ

[
− 2

µ
EQn

]
︸ ︷︷ ︸

”ω2”

(
u2 + v2

)
ϕn(u, v) =

2e2

ε︸︷︷︸
”E”

ϕn(u, v). (6.54)

Using the solution of 2D harmonic oscillator we get[
2e2

ε

]2

= [h̄ω (n+m+ 1)]
2

= − 2

µ
EQn h̄

2 (n+m+ 1)
2
, (6.55)

leading �nally to

EQn = − µe4

2ε2h̄2

1[
1
2 (n+m) + 1

2

]2 = − 4

(n+m+ 1)
2 [Ryµ] , (6.56)

where so-called excitonic Rydberg Ryµ = µe2

2h̄2ε2
was introduced and the following

condition for n,m has to be ful�lled n −m = ±2p, p = 0, 1, 2, .... This series is
equivalent to

EQn = − 1(
n− 1

2

)2 [Ryµ] , n = 1, 2, ... (6.57)

with degeneracy as every second shell of 2D harmonic oscillator (n=1: 1 degen-
erate state, n=2: 3, n=3: 5 etc.).

Alternative approach775 to solve Eq. (6.51) (written in excitonic Rydberg units)to
assume factorization of ϕ = 1√

2
R(r)eimφ and transform from Cartesian to polar

coordinates r, φ(
−
[

1

r

∂

∂r

(
r
∂ϕn(r)

∂r

)
+

1

r2

∂2ϕn(r)

∂φ2

]
− 2

r
ϕn(r)

)
= EQn ϕn(r). (6.58)

Assumption of form of radial function R(r) = Cr|m|e−r
√
EnL(r) transforms

problem to equation de�ning associated Laguerre polynomials L(r)

r
d2L(r)

dr2
+

(
2|m|+ 1− 2r

√
−EQn

)
dL(r)

dr
+

+

(
2− 2|m|

√
−EQn −

√
−EQn

)
L(r) = 0,

(6.59)

giving as previously EQn = −1/(n + 1/2)2 (note that n start from 0 now) and
excitonic relative motion wavefunction

ϕn(r, φ) =

√√√√√
(√
−EQn

)3

(n− |m|)!

π(n+ |m|)!

[
2r

√
−EQn

]|m|
e−r

√
−EQn L

2|m|
n−|m|

(
2r

√
−EQn

)
eimφ.

(6.60)

First 3 shell eigenenergies and relative motion wavefunctions are listed in Table
6.7.
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n En [Ryµ] deg. m wf. ϕn,m(r, φ)

0 −4 {0} ϕ0,0 =
√

8
π e
−2r

1 −4/9 {−1, 0, 1} ϕ1,m =
√

8
27π(1+|m|)!

(
4
3 r
)|m| e− 2

3
rL

2|m|
1−|m|

(
4
3 r
)
eimφ

2 −4/25 {−2,−1, 0, 1, 2} ϕ2,m =
√

8(2−|m|)!
125π(2+|m|)!

(
4
5 r
)|m| e− 4

5
rL

2|m|
2−|m|

(
4
5 r
)
eimφ

Table 6.3: List of �rst three 2D excitonic shells n, degeneracies (deg.) and wave-
functions (wf.).

First few associated Laguerre polynomials are:

L0
0(x) = 1,

L0
1(x) = −x+ 1,

L2
0(x) = 1,

L4
0(x) = 1,

L2
1(x) = −x+ 3,

L0
2(x) = 1/2

(
x2 − 4x+ 2

)
.

(6.61)

Analytical solutions to excitonic problem are, however, available only for very
simple dispersion relation (parabolic model) and no e�ect of electron and hole
Bloch wavefunctions on their interaction. Interestingly, �rst problem with cal-
culating excitonic states for more sophisticated dispersion models can be over-
come by Fourier transform of Eq. (6.47). First step in this direction is writing
electron-hole wavefunction as linear combination of plane waves with coe�cients
An

(
~ke,~kh

)
:

Ψn (~re, ~rh) =
1

S

∑
~ke,~kh

An

(
~ke,~kh

)
ei
~ke·~reei

~kh·~rh , (6.62)

where S is crystal surface, which should vanish from calculation at some point
and ~ke(h) are electron (hole) wavevectors. Using previously de�ned relative mo-
tion coordinates r,R and collecting them inside exponents as

~k =
m∗h

m∗e +m∗h

~ke −
m∗e

m∗e +m∗h

~kh, ~Q = ~ke + ~kh, (6.63)

we can write

Ψn (~re, ~rh) =
1

S

∑
k,Q

An

(
~k, ~Q

)
ei
~k·~rei

~Q·~R = Ψn

(
~r, ~R

)
. (6.64)

Acting with Hamiltonian ĤX from Eq. (6.47) on such wavefunction we get

1

S

∑
~k, ~Q

An

(
~k, ~Q

)
ei(

~k·~r+~Q·~R)
[
∆GAP +

h̄2Q2

2M
+
h̄2k2

2µ
− e2

εr

]
=

En
1

S

∑
~k, ~Q

An

(
~k, ~Q

)
ei(

~k·~r+~Q·~R).

(6.65)
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Integrating both sides by
∫
S
dr
∫
S
dR... and changing some integrals to delta

functions (note distinct notation for continuous delta δ(~k − ~k′) vs discrete one
δ~k~k′) ∫

S

dr exp
[
−i
(
~k − ~k′

)
· ~r
]

= (2π)
2
δ
(
~k − ~k′

)
= S · δ~k~k′ ,∫

S

dR exp
[
−i
(
~Q− ~Q′

)
· ~R
]

= (2π)
2
δ
(
~Q− ~Q′

)
= S · δ~Q~Q′ ,

(6.66)

we obtain
S2

S

∑
~k, ~Q

An

(
~k, ~Q

)
E(~k, ~Q)δ~k~k′δ~Q~Q′ −

S

S

∑
~k, ~Q

An

(
~k, ~Q

)∫
S

ei(
~k−~k′)·~r e

2

εr
δ~Q~Q′ =

S2

S
En
∑
~k, ~Q

An

(
~k, ~Q

)
δ~k~k′δ~Q~Q′ .

(6.67)

Executing delta's, changing notation (k,Q)↔ (k′, Q′), dividing by S and noting,
that Fourier transform of 1/r interaction is:∫

S

dr
ei(

~k−~k′)·~r

r
=

2π∣∣∣~k − ~k′∣∣∣ (6.68)

we obtain

E
(
~k, ~Q

)
An

(
~k, ~Q

)
− 1

S

∑
~k′

2πe2

ε
∣∣∣~k − ~k′∣∣∣An

(
~k′, ~Q

)
= EnAn

(
~k, ~Q

)
. (6.69)

This equation, even tough equivalent to Eq. (6.47), gives more insight, because
now one can easily generalize electron-hole dispersion E(k,Q) beyond parabolic
model. This equation is equivalent to so-called Wannier equation and constitutes
simpli�ed version of Bethe-Salpeter equation. For parabolic model of electron
and hole dispersions it can be solved analytically775 and yields same as previ-
ously mentioned binding energies En and k-dependence of amplitudes An, for
example for 1s exciton state, is given by:

An

(
~k
)

=
√

2π

(
4

k2 + 4

) 3
2

(6.70)

However, as mentioned earlier, this approach does not contain electron - hole
Bloch form factors (which in principle could be introduced in Ψn in Eq. (6.62)
and it misses crucial corrections coming from quantum mechanical exchange
interaction.

6.8 Details of CI derivation of Bethe-Salpeter-

like equation

We begin with excitonic Hamiltonian

ĤX |X〉n = En|X〉n (6.71)
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where interacting excitonic Hamiltonian ĤX is given in notation hiding both
band index b = v = V B or b = c = CB, wavevector ~k and spin σ in single
index, for example |i〉 = |b,~k, σ〉 as

ĤX =
∑
i

εic
†
i ci︸ ︷︷ ︸

Ĥ
(1)
X

+
1

2

∑
ijkl

〈i |j |V | k| l〉 c†i c
†
jckcl︸ ︷︷ ︸

Ĥ
(2)
X

. (6.72)

In next step we face problem of calculating matrix elements of this Hamiltonian.
As a �rst step let's consider single particle part Ĥ(1)

X . For two arbitrary excitonic
states |X1〉 = c†f1ci1 |GS〉, |X2〉 = c†f2ci2 |GS〉, where i1 = (k, v), f1 = (k, c),
i2 = (k′, v), f2 = k′, c, we have for single particle part of the Hamiltonian

〈X2|Ĥ1
X |X1〉 =

Nall∑
m=1

εm〈X2|c†mcm|X1〉 =

Nall∑
i=m

εm〈GS|c†i2cf2c
†
mcmc

†
f1
ci1 |GS〉

(6.73)
To attack Ĥ1

X expectation value, we use Wick theorem to reduce 6-component
operator

〈GS|c†i2cf2c
†
mcmc

†
f1ci1|GS〉 = 〈GS|c†i2cf2|GS〉︸ ︷︷ ︸

=0

〈GS|...|GS〉 − 〈GS|c†i2c
†
m|GS〉︸ ︷︷ ︸

=0

〈GS|...|GS〉+

〈GS|c†i2cm|GS〉〈GS|...|GS〉 − 〈GS|c
†
i2c
†
f1|GS〉︸ ︷︷ ︸

=0

〈GS|...|GS〉+ 〈GS|c†i2ci1|GS〉〈GS|...|GS〉 =

〈GS|c†i2cm|GS〉︸ ︷︷ ︸
δ(m,i2)

〈GS|cf2c
†
mc
†
f1ci1|GS〉+ 〈GS|c†i2ci1|GS〉︸ ︷︷ ︸

δ(i1,i2)

〈GS|cf2c
†
mcmc

†
f1|GS〉 =

δ(m, i2)〈GS|cf2c
†
mc
†
f1ci1|GS〉+ δ(i1, i2)〈GS|cf2c

†
mcmc

†
f1|GS〉.

(6.74)

Further reduction of 4-component operators can be performed analogously for
�rst one as

〈GS|cf2c
†
mc
†
f1ci1|GS〉 =

〈GS|cf2c
†
m|GS〉〈GS|...|GS〉 − 〈GS|cf2c

†
f1|GS〉〈GS|...|GS〉+ 〈GS|cf2ci1|GS〉︸ ︷︷ ︸

=0

〈GS|...|GS〉 =

〈GS|cf2c
†
m|GS〉 〈GS|c

†
f1ci1|GS〉︸ ︷︷ ︸
=0

−〈GS|cf2c
†
f1|GS〉〈GS|c

†
mci1|GS〉 =

− δ(f1, f2)δ(m, i1),

(6.75)

and for the second as

〈GS|cf2c
†
mcmc

†
f1|GS〉 =

〈GS|cf2c
†
m|GS〉〈GS|...|GS〉 − 〈GS|cf2cm|GS〉︸ ︷︷ ︸

=0

〈GS|...|GS〉+ 〈GS|cf2c
†
f1|GS〉〈GS|...|GS〉 =

〈GS|cf2c
†
m|GS〉〈GS|cmc

†
f1|GS〉+ 〈GS|cf2c

†
f1|GS〉〈GS|c

†
mcm|GS〉 =

δ(m, f2)δ(m, f1) + δ(f1, f2)δ(m ≤ Nocc.)
(6.76)

130



Combining all reduced operators we get

〈X2|Ĥ(1)
X |X1〉 =

Nall∑
m=1

εm〈X2|c†mcm|X1〉 =

Nall∑
i=m

εm (δ(m, i2)[−δ(f1, f2)δ(m, i1)] + δ(i1, i2)[δ(m, f2)δ(m, f1) + δ(f1, f2)δ(m ≤ Nocc.)]) =

δ(i1, i2)δ(f1, f2)

εf1 − εi1 +

Nocc.∑
m=1

εm

 .
(6.77)

For two-body interaction part of the Hamiltonian H(2)
X situation is more com-

plicated due to 8-component operators that need to be reduced:

〈GS|c†i2cf2c
†
m1c
†
m2cm3cm4c

†
f1ci1|GS〉 = 〈GS|c†i2cf2|GS〉︸ ︷︷ ︸

=0

〈GS|...|GS〉+

− 〈GS|c†i2c
†
m1|GS〉︸ ︷︷ ︸

=0

〈GS|...|GS〉+ 〈GS|c†i2c
†
m2|GS〉︸ ︷︷ ︸

=0

〈GS|...|GS〉+

− 〈GS|c†i2cm3|GS〉︸ ︷︷ ︸
δ(i2,m3)

〈GS|...|GS〉+ 〈GS|c†i2cm4|GS〉︸ ︷︷ ︸
δ(i2,m4)

〈GS|...|GS〉+

− 〈GS|c†i2c
†
f1|GS〉︸ ︷︷ ︸

=0

〈GS|...|GS〉+ 〈GS|c†i2ci1︸ ︷︷ ︸
δ(i1,i2)

|GS〉〈GS|...|GS〉 =

− δ(i2,m3)〈GS|cf2c
†
m1c
†
m2cm4c

†
f1ci1|GS〉+

+ δ(i2,m4)〈GS|cf2c
†
m1c
†
m2cm3c

†
f1ci1|GS〉+

+ δ(i1, i2)〈GS|cf2c
†
m1c
†
m2cm3cm4c

†
f1|GS〉.

(6.78)

Remaining 6-operator product can be calculated analogously to 1-operator case.
As a result one can obtain 14 non-zero terms, which can be further reduced using
symmetry ~r ↔ ~r′ inside matrix elements Vijkl to give Bethe - Salpeter equation
with ground state energy correction and self-energy corrections that can be
easily subtracted from the diagonal of BSE.

6.9 Study of direct and exchange Coulomb ma-

trix elements

To understand better product densities entering direct electron-hole interaction
form factors, let us analyze simplest co-densities calculated from k = K point to
some other points along K −Γ line (because our K point can be chosen to have
only ky component, this path on BZ can be represented as x ·K). As one can
observe in Fig. 6.4 (a,b) for absolute values of ρ, z dependence of pair density for
k = k′ = K for G = 0 is simply describing in-plane integrated density of Slater
orbitals with weights coming from their orbital composition obtained from tight-
binding model. As shown for ρcc describing conduction band in Fig. 6.4 (a), in
z dependence one can clearly see both Mo and S2 orbitals, because they both
contribute to the conduction band (70 an 30 %, respectively). Three peaks in
central region stem from md = 0 shape of orbital. Situation is even simpler for

131



Figure 6.4: Simplest pair densities k′ and z-th dependence for both (a) valence
and (b) conduction band ρ's. For simplicity both cases wavevector k is set to
K point (corner of hexagonal BZ) and reciprocal lattice vector G is set to 0.
Figure partly reproduced from Ref. 5.

valence band co-density, see Fig. 6.4 (b), in which only md=+2 contributes in
practice and in-plane summation of contributions of this orbital gives single peak
without additional features. Decreasing peak heights when distance between k
and k′ points is increased stems from simple property that for increased k − k′
(or non - zero G) in integral there is oscillating factor ei(k−k

′−G)·r that when
integrated out spatially, decreased absolute value of the integral.

We note that numerical integration of co-densities, because their dependence on
two wavevectors k and k′, necessary �ne resolution of z-dependence and necessity
of evaluation for di�erent G's, is generally hard computationally. This makes
summation of G vectors in Eq. (3.24) challenging. Example of convergence of
absolute value of some representative matrix element V (k = K, k′ = 0.5K = Q)

is shown in Fig. 3.8. Convergence parameter Gcuto� sets radius of G summation
in reciprocal space in units of length of primitive reciprocal lattice vector |G1|.
One can observe that relative error in matrix element, when no summation is
performed and only one G = 0, is of the order of 20%. One can argue, however,
that this value is overestimated, because it describes bare matrix elements, which
later will be screened. In practice, we were able to calculate matrix elements
for 7000 k-points lattice only for Gcutoff = 1 · |G1|, therefore our numerical
results using full form factors should be understood as possibly under-estimating
strength of electron-hole attraction.

Let us discuss now symmetry of direct interaction form factors across BZ. In
Fig. 6.5 we present absolute values of FD(+K, k′, G) for k′ vectors in +K valley
and three di�erent G's chosen in such way to produce triangle centered around
+K point, as shown in Fig. 3.1. One can observe that even if k=K is taken, G
vector translates overall 1/|K − k′| dependence to the respective corner of the
hexagon, rationalizing taking as an approximate interaction 1/|q− q′| simpli�ed
model. This property ensures that interaction around K point in sense of it's
magnitude is isotropic.

Having checked magnitude of interaction, let us study it's phase. Considering
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Figure 6.5: Absolute value of form factors of Coulomb interaction from +K
point to all other points in +K valley calculated for three di�erent G-vectors
translating wedges centered around Γ point to triangle around +K point.

Figure 6.6: (a) Circle of k' vectors around +K point parametrized using complex
number coordinate representation as ~k′ = qeiϕ. (b) Phase θ of matrix element
V D(+K, k′) = |V |eiθ.
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Figure 6.7: Highly converged calculation comparing numerical results of magni-
tude of (a) direct and (b) exchange interactions inside one valley. In both cases
matrix elements are calculated for k=K and G=0. Color scale is given in eV·Å2

units.

triangular picture of the +K valley, we circle around +K point (Fig. 6.6 (a))
and calculate complex element V D(K, k′ = qeiϕ) = |V |eiθ. Next, we plot phase
θ of such element for di�erent q′s denoting distance of k' from K point. As
shown in Fig. 6.6 (b) for large q's, reaching from K to Q points, there is a
consistent 2π rotation (with 2π jump discontinuity coming from numerics) of
matrix element. We note that this behavior is not general for all points across BZ
and circles around them, therefore cannot be utilized to build some systematic
approximation theory of V D across BZ.

Having established numerical properties of direct interaction, let us now com-
pare it with exchange one. In Fig. 6.7 (a-b) we calculated with large numerical
precision magnitudes of complex direct interaction and real exchange, using
Eq. 3.24 and Eq. 3.27, respectively. In general one can observe that exchange
interaction magnitude is at least two orders of magnitude smaller than direct
one. Interestingly, it does not follow 1/|q− q′| dependence, visibly growing with
larger |q− q′| separation. As apparent from Eq. 3.27 this is purely orbital e�ect
associated with FX form factors.

Finally, let us discuss excitonic spectrum obtained with simpli�ed form fac-
tors of direct interaction taking fully into account tight-binding coe�cients, as
discussed in Section 3.3.6 "Interaction form factor approximation theory". As
shown in Fig. 6.8, for k-grid including almost 30000 k-points in one valley and
Rytova - Keldysh screening parameter α = 2.0 Å, one can observe topological
splittings of 2p− - 2p+ states, fully consistent with full form factor calculation.
We note that exact value of this splitting is larger (22 meV) than this obtained
from full form factor theory (3.5 meV) for screening parameters giving similar
energy of the ground state (≈ 350 meV). We note also that due to high pre-
cision of this calculation we were able to obtain well separated n=3 excitonic
shell and we observed there internal splitting of states (with energetic hierarchy
(3d−, 3d+) < (3d−, 3d+) < 3s) due to chirality of interaction consistent with
picture built to explain topological nature of 2p+-2p− splitting.
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Figure 6.8: Valley excitonic spectrum obtained with approximated direct inter-
action form factors. Screening parameter α is taken as 2.0 Å. Exact number of
k-points used in calculation is 29231.

6.10 Study of MoS2 nanoribbon

Low energy band structure of zigzag and armchair nanoribbons is shown in Fig.
6.9 (a-b). We choose system size to be 40 and 42 atoms (in y-direction, in�nite
in x). One can observe in both cases bulk bands of nanoribbons, valence bands
below E = 0 eV and conduction bands above E = 1.6 eV, as expected from bulk
2D crystal tight-binding model. Consistently with DFT results,776 in both cases
in-gap states are observed. First, we study where these states are localized. To
do that, we check how much of a given state wavefunction is localized on the top
and bottom of the nanoribbons. Clearly, in both cases in-gap states are almost
solely localized on edge Mo (S2) atom (dimer). Main di�erence between two
types of edge terminations is lack of band gap in zigzag case. Also, lower and
upper branches of in-gap states in zigzag nanoribbon are localized on di�erent
edges (Fig. 1), contrary to the armchair case.

For transport calculations we use standard two-lead geometry500 and Lan-
dauer formula for conductance G = e2

h T , in which transmission coe�cient T

is calculated using Caroli formula T = Tr
[
ΓLG

r
1,NΓR

(
Gr1,N

)†]
, where Gr1,N

is retarded Green's function matrix obtained using recursive scheme. Surface
Green's functions of semi-in�nite leads are calculated using Sancho-Rubio algo-
rithm. Left (right) lead self-energies ΣL (ΣR) give ΓL(R) matrices via formula
ΓR(L) = ΓL(R) − Γ†L(R). We note that all calculations are performed for 1-body
non-interacting electrons at T = 0 K. Local density of states A(i, E) (at atom i,
for a given energy E) is calculated using imaginary part of Green's function as
A(i, E) = − 1

π Im [
∑
αG

r(i, i, α, E)], where α represents summation over proper
orbitals and spins, depending on atom type (Mo or S2). Another method al-
lowing us to study real space distribution of electrons and their localization is
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Figure 6.9: Band structure of (a) zigzag- and (b) armchair - type MoS2 nanorib-
bon. The width of one slice is set to 40 and 42 atoms, respectively. One can
clearly observe in-gap edge states between VB and CB bulk bands. Size of the
blue (red) dots represents how much state for a given 1D wavevector k and
energy E is localized on Mo (S2) site on the edge of the nanoribbon.

Figure 6.10: Atom-resolved local density of states (LDOS) for zigzag nanoribbon.
For every energy value E of nanoribbon band structure (left panel, k show for
values from 0 to π/a) atom resolved LDOS is shown on the right panel. Colors
denote arbitrary scaled LDOS intensities.
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Figure 6.11: (a)Bandstructure and (b) conductance G of clean zigzag nanorib-
bons for a given energy E. It is clear that there are di�erent regimes of conduc-
tance depending on number of edge states. (c) Transport properties of disordered
zigzag nanoribbons (size 40 by 80 atoms). For 3 di�erent Fermi energies EF we
calculate averaged conductance G for di�erent Anderson-disorder strengths W.

local density of states (LDOS), presented for zigzag nanoribbon in Fig. 6.10.
For every energy E we can plot atom resolved LDOS, and we observe that when
moving across the bulk gap, states are either from bottom edge of the nanorib-
bon (atom number 1), or from topmost one (atom number 40). There exists
also range of energies for which these two branches overlap (E = 0.75 − 1.25

eV). We observe also that close to the top and bottom of edge states parabolas
seen on the left panel of Fig. 6.10, edge states are becoming more de-localized,
comparing to regions far from bulk states and crossover region.

In the last part we check also how much conducting in-gap states are robust to
non-magnetic disorder, described by Anderson-like impurity model. We choose
to study systems with 40 by 80 (zigzag ) and 42 by 84 atoms (armchair).
For armchair nanoribbons (not presented) we observe quick disappearance of
conductance with respect to disorder strength W. Contrary to that, in zigzag
nanoribbon (Fig. 6.11) we observe that if top and bottom branches of in-gap
states do not cross, conductance is protected against backscattering (plateaus for
E=0.5 and E=1.5 eV). One can notice that transport by states localized on Mo
atoms is slightly more robust than transport via states localized on S2 dimers.
When in-gap states cross, we observe that for e.g. EF = 1.0 eV, conductance
at the beginning is larger (G = 4e2/h), but drops showing no plateau feature.
However, due to relatively small system size we cannot conclude if conductance
for this regime is unprotected, which will be left for further studies.

6.11 Topological splitting in QD in Kane-Mele

model

In the following Appendix we study the e�ect of Berry's curvature and topol-
ogy on states con�ned in gate de�ned parabolic QD's. We choose to study
Kane-Mele model,52,53 in which two topologically non-equivalent routes to gap
opening can be realized. This model was shown to realistically describe low en-
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Figure 6.12: Quantum dot spectrum in Kane-Mele model. (a) The �rst three
energy shells of the conduction band. Squares represent results obtained for ∆

and crosses corresponding t2. Quantum dot radius varied from 20 to 60 Å (see
legend). (b) The �rst intra-shell energy split ∆E12 versus δE22 for ∆ = 0.25

(blue triangles) and ∆ = 1.00 (black dots). Dashed lines represent parabolic
�ts. Inset: (∆E12)

1/2 against ∆E22 for ∆ up to 1.25 (details in legend).

ergy sector of mono-54,777,778 and bi-779 layers of graphene on top of di�erent
monolayer transition metal dichalcogenides, monolayers of jacutingaite780 and
it's recently proposed495 counterpart Pd2HgSe3. We show the relation between
shell splitting, QD size quantization, magnitude of Berry's curvature controlled
by size of the band-gap and topological phase of the system.

First we describe brie�y Kane-Mele TB model. We consider generic honeycomb
lattice with constant a0 = 1.42Å, value usually taken for graphene. The simu-
lations are performed in computational box with periodic boundary conditions
(PBC). Model Hamiltonian yields

H0 =
∑
〈iα,jβ〉

tiα,jβc
+
iαcjβ+

∑
iα

(
±∆

2

)
c+iαciα +

∑
〈〈iα,jβ〉〉

t̃iα,jβe
−iνijφc+iαcjβ ,

(6.79)

where the summation extends over atoms i, j and spins α, β. c+iα and ciα are
fermion creation and annihilation operators, respectively. In �rst sum over near-
est neighbor (<>) atoms, tiα,jβ is the hopping integral. Next two sums describe
two ways of opening the gap in the systems. In second sum, staggered sublat-
tice potential opens trivial gap ∆ in the system, while in third sum Kane-Mele
spin-orbit term with strength t̃ opens non-trivial gap.

In Fig. 6.12 (a) we show shells of QD calculated in Kane-Mele model analogous
K-point derived spectrum of MoS2 quantum dot shown in Fig. 4.5. Four-fold
degeneracy results from spin and valley degeneracy. We note that results of
the same RQD are slightly di�erent between trivial ("∆ gap") and topological
system ("t̃ gap") due to di�erent e�ective masses at band edges in both models.
One can clearly see, however, that both exhibit splitting in n=2 shell. Now we
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quantify this splitting in Fig. 6.12 (b) by plotting value of intra-shell splitting
∆E2−2 vs corresponding inter-shell splitting ∆E1−2. Because we do this for two
di�erent gap parameters ∆ = 0.25 eV and ∆ = 1.25 eV, dots with same radii give
di�erent inter-shell energies. Therefore, we study di�erent sizes of the dots giving
di�erent ∆1−2 and then show corresponding topological splitting in second shell.
One can observe in Fig. 6.12 (b) that for system with larger magnitude of Berry's
curvature at K point (∆ = 0.25 eV) one has signi�cantly larger topological
splitting than system with smaller value of Berry's curvature (∆ = 1.25 eV),
supporting our interpretation that inter-shell splitting is topological e�ect. Inset
of Fig. 6.12 (b) shows that basically square root value of topological splitting is
linearly dependent of intra-shell splitting for di�erent gaps, therefore for di�erent
magnitudes if Berry's curvature. Theoretical explanation of this numerically
discovered dependence requires further studies.
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