WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY

SUBJECT CARD

Course name in Polish: Wstęp do fotowoltaiki Course name in English: Introduction into

Photovoltaics

Course language: English

University-wide general course type:

1) basic course (mathematics, physics, chemistry, other)

Departmental course developing professional skills:

1)specialized course

Type of course -optional

Educational effects according to ZW 26/2017:

P8U_W Graduate knows and understands the global scientific and creative and consequent implications for practice

P8S_WG Graduate knows and understands the main trends of development of scientific disciplines relevant to the training programme

P8S_K O Graduate has underestimated the need to develop contacts between scientific and socio-economic environment

Subject code **FTP009012W**

	Lecture	Laboratory	Seminar
Number of hours of organized classes in	30	_	_
University (ZZU)	50		
Number of hours of total student workload	60	-	-
(CNPS)	00		
Form of crediting	Assesment	-	-
Number of ECTS points	3		
including number of ECTS points for practical (P)			
classes			
including number of ECTS points for direct teacher-			
student contact (BK) classes			

*delete as applicable **In case of didactic courses also inspections and evaluation classes

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic knowledge of physics

SUBJECT OBJECTIVES				
C1	Knowledge of the principles, the basic parameters and characterization methods of solar			
	cells			
C2	To know the State of knowledge regarding cells I, II and III generation			
C3	Knowledge of the market for renewable energy sources (RES)			

WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:

PEK_W01 Has a basic understanding of the principles of commercial and laboratory solar cells operation

PEK_W02

Has a basic knowledge of the latest trends in the field of photovoltaics, solar (photovoltaic) market and its prospects

Relating to skills:

PEK_U01

Can describe the operation of the solar I, II and III generation.

PEK_U02

Can discuss the latest trends in the field of photovoltaics and its importance for the world economy

Relating to social competences:

PEK_K01

Understands the need for development of alternative energy sources

III generation (organic, dye sensitized solar cells, perovskites, quantum dot solar cells, tandem solar cells and many more...).

Solar cells' R@D.

PROGRAM CONTENTS			
Form of classes – lecture N			
Lec 1	Introduction into solar radiation. Black body radiation laws.	2	
Lec 2	Semiconductors in photovoltaics. Statistics of electrons and holes in semiconductors. Doping of semiconductors.	3	
Lec 3	Optical transitions in semiconductors. Generation and recombination of electron-hole pairs.	2	
Lec 4	ec 4 P-n junctions. Mechanisms of current transport in thermal equilibrium and for a biased p-n junction.		
Lec 5	Fundamentals of a solar cell's working principle, parameters. 2		
Lec 6	Methods of solar cells' and solar panels' characterization. 2		
Lec 7	Metody charakteryzacji ogniw i paneli fotowoltaicznych 2		
Lec 8	Heterozłącza, kontakt metal-półprzewodnik, 2		
Lec 9	I generation solar cells (wafer based crystalline and multi-crystalline silicon and GaAs solar cells).	3	
Lec 10	II generation (thin film solar cells: amorphous silicon, CdTe, CIGS and CIS solar cells, kesterites).	3	
Lec 11	Lec 11 III generation (organic, dye sensitized solar cells, perovskites, quantum dot solar cells, tandem solar cells and many more)		
Lec 12	The current state of knowledge about the research in the field of photovoltaics and modern solutions. PV Market	2	
Lec 13	Assessment	2	
	Total hours	30	

WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

TEACHING TOOLS USED				
N1	Traditional lecture with multimedia presentations complemented by demonstrations of			
	physical phenomena.			
N2	E-lecture materials posted online.			
N3	Presenting a paper on a chosen topic			
N4	Consultation and contact by email.			
N5	Own work			

EVALUATION OF ACHIEVED SUBJECT EDUCATIONAL EFFECTS					
Evaluation:	Educational effect	Way of evaluating achievement of			
F – forming (partial)	number	educational effects			
C – concluding					
F1	PEK_W01,PEK_W02,	Activity on the lecture, presented paper			
	PEK_U01, PEK_U02,				
	PEK_K01				
P= F1	•				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

1] Klaus Jäger, Olindo Isabella, Arno H.M. Smets, René A.C.M.M. van Swaaij, Miro Zeman *Solar Energy Fundamentals, Technology, and Systems*, ed. Delft University of Technology, 2014.

[2] P.Wurfel, *Physics of Solar Cells: from Basic Principles to Advanced Concepts*, ed. Wiley-VCH 2009.

[3]http://www.fulviofrisone.com/attachments/article/403/solar%20cell%20device%20physic s.pdf

SECONDARY LITERATURE:

[1] <u>http://www.pveducation.org/pvcdrom</u>

SUBJECT SUPERVISOR

(NAME AND SURNAME, E-MAIL ADDRESS)

Prof. dr hab. Ewa Popko, ewa.popko@pwr.edu.pl