WROCŁAW UNIVERSITY OF TECHNOLOGY - PHD STUDIES

FACULTY OF FUNDAMENTAL PROBLEMS OF TECHNOLOGY

SUBJECT CARD

Course name in Polish Badania

mikroskopowe w inżynierii

biomedycznej

Course name in English Microscopic

measurements in biomedical

engineering

Course language English

University-wide general course type:

- 1)basic course (mathematics, physics, chemistry, other)
- 2) humanity course
- 3) managerial skills
- 4) English language
- 5) other modern language

Departmental course developing professional skills:

- 1) specialized course
- 2) <u>interdisciplinary course</u>
- 3) seminar (interdisciplinary, specialized, departmental)

Type of course (obligatory, **optional**)

Educational effects according to ZW 26/2017:

P8S_W, P8S_WG, P8S_UW, P8S_UK, P8S_KO

Subject code FTP9003

*delete as applicable

	Lecture	Laboratory	Seminar
Number of hours of organized classes in University (ZZU)	30		
Number of hours of total student workload (CNPS)	90		
Form of crediting	Exam **	Exam / crediting with grade*	Oral presentation
Number of ECTS points	3		
including number of ECTS points for practical (P) classes			
including number of ECTS points for direct teacher- student contact (BK) classes	2		

^{*}delete as applicable **In case of didactic courses also inspections and evaluation classes

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of physics
- 2. Basic knowledge of medical imaging techniques

SUBJECT OBJECTIVES		
C1	acquire knowledge of the techniques that are used in microscopic studies of	
	biomaterials and tissues	

WROCŁAW UNIVERSITY OF TECHNOLOGY - PHD STUDIES

C2	obtain basic knowledge of the structure and principles of the various microscopes	
	used for imaging biomaterials and tissue	
C3	Solving technical and design problems in the laboratory . Students obtain a	
	knowledge about stainning techniques used in nanoscopic measurement methods.	

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:

- P8S _W has knowledge at an advanced level of development trends and the most important new developments in the field of microscopy methods for the study of biological materials
- P8S _WG has advanced knowledge of modern research techniques

Relating to skills:

- P8S _UW able to create and lead an independent research using modern nanoscopic imaging techniques of biological materials
- P8S _UK knows how to initiate and lead discussions on topics of scientific research and the interpretation of results obtained using imaging techniques

Relating to social competences:

P8S _KO understands the importance of research and teaching

	PROGRAM CONTENTS			
	Form of classes – lecture	Number of hours		
Lec1	An introduction to the newest examination methods of biological materials			
Lec2	The application of measurement techniques in tissue engineering.	2		
Lec3	The methods of stem cells characterization.	2		
Lec4	The introduction to fluorescence microscopy - techniques of visualization.	2		
Lec5	Preparation of the samples for microscopic examination. Methods of fixation and staining.	2		
Lec6	Fluorescence microscopy: FRET, FLIC, TIRFM, FLIM.	2		
Lec7	Fluorescence nanoscopy. Introduction.	2		
Lec8	Fluorescence nanoscopy. STED.	2		
Lec9	Fluorescence nanoscopy. PALM.	2		
Lec10	Fluorescence nanoscopy. STORM.	2		
Lec11	Hydrid techniques of micro- and nanoscopy part 1.	2		
Lec12	Hydrid techniques of micro- and nanoscopy part 2.	2		
Lec13	Techniques of nanomanipulation: optical tweezers.	2		
Lec14	The application of nanomanipulation techniques for the characterization of biological materials part 1.	2		
Lec15	The application of nanomanipulation techniques for the characterization of biological materials part 2.	2		

WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

	Total hours	30
--	-------------	----

TEACHING TOOLS USED		
N1	lecture with multimedia presentation	
N2	project with multimedia presentation and discussions	

EVALUATION OF ACHIEVED SUBJECT EDUCATIONAL EFFECTS			
Evaluation:	Educational effect	Way of evaluating achievement of educational	
F – forming (partial)	number	effects	
C – concluding			
F1	P8S_W, P8S_WG	exam	
F2	P8S_W, P8S_WG	project	
	P8S_UW,		
	P8S_UK, P8S_KO		
P=0.75*F1+0.25*F2			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Mikroskopia sił atomowych (AFM) biomedyczne zastosowanie pomiarów w nanoskali. Marta Kopaczyńska. Wrocław : Oficyna Wydawnicza Politechniki Wrocławskiej, 2010.
- [2] 3D images of materials structures :processing and analysis /Joachim Ohser and Katja Schladitz. Weinheim : Wiley-VCH Verlag GmbH & Co. KGaA, cop. 2009
- [3] Advanced biomaterials :fundamentals, processing, and applications /edited by Bikramjit Basu, Dhirendra Katti, and Ashok Kumar. Hoboken. : John Wiley & Sons ; [Westerville, Ohio] : The American Ceramic Society, cop. 2009.
- [4] Optical imaging techniques in cell biology. Guy Cox. Boca Raton: CRC/Taylor & Francis, cop. 2007.
- [5] Tissue engineering :essentials for daily laboratory work /W. W. Minuth, R. Strehl, K. Schumacher. Weinheim : Wiley-VCH, cop. 2005
- [6] Obrazowanie biomedyczne. Red. tomu Leszek Chmielewski, Juliusz Lech Kulikowski, Antoni Nowakowski. Warszawa: Akademicka Oficyna Wydawnicza Exit, 2003.
- [7] Systemy mikroskopii bliskich oddziaływań w badaniach mikro- i nanostruktur. Teodor Paweł Gotszalk. Wrocław : Oficyna Wydawnicza Politechniki Wrocławskiej, 2004

SECONDARY LITERATURE:

[1] Articles from journals: Science, Biomaterials, Biomolecular Engineering, Biotechnology, Bioscience, Biomechanics and Modeling in Nanotechnology, Polymer Composites, Nanotechnology, Biophysics, Molecular Imaging, Tissue Engineering

SUBJECT SUPERVISOR		
(NAME AND SURNAME, E-MAIL ADDRESS)		

WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

Dr hab. Marta Kopaczyńska, Prof. PWr marta.kopaczynska@pwr.edu.pl