WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

FACULTY OF Fundamental Problems of Technology SUBJECT CARD Course name in Polish Optyka kwantowa w układach półprzewodnikowych Course name in English Quantum optics in semiconductor structures Course name in English Quantum optics in semiconductor structures Polish Departmental course developing professional skills: 1) specialized course Type of course: optional Type of course: optional Educational effects according to ZW 26/2017: P8S_WG Subject code FZP9074

*delete as applicable

	Lecture	
Number of hours of organized classes in	30	
University (ZZU)	50	
Number of hours of total student workload	90	
(CNPS)		
Form of crediting	Exam	
Number of ECTS points	3	
including number of ECTS points for practical (P)	0	
classes		
including number of ECTS points for direct teacher-	1,4	
student contact (BK) classes		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student is able to analyze problems and find solutions using methods of mathematical analysis and linear algebra.
- 2. Student knows quantum mechanics and is able to apply its formalism
- 3. Student is able to work with literature, including papers in English

SUBJECT OBJECTIVES

C1 A student will learn the essential concepts and methods of quantum optics.

C2 A student will learn the current theoretical state-of-the-art and the most recent experimental results of quantum optics applied to semiconductor systems.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge: PEK_W01 has knowledge of the foundations of quantum optics PEK_W02 has knowledge of the use of experimental and theoretical methods of quantum optics in semiconductor systems PEK_W03 can use knowledge from quantum mechanics and other fields of physics to analyze problems of quantum optics relating to skills: PEK_U01 has skills related to the research methodology of quantum optics

WROCŁAW UNIVERSITY OF TECHNOLOGY – PHD STUDIES

PROGRAMME CONTENT		
Form of classes - lecture		Number of hours
Lec1	Semiclassical description of the interaction of light with matter: a two- level atom driven by classical light; optical transitions and selection rules in semiconductors; coherent control of semiconductor quantum dots	6
Lec2	Quantization of the electromagnetic field; optical resonators; quantum dots in semiconductor nanocavities	4
Lec3	Coherent and squezed states	4
Lec4	Phase operators	2
Lec5	Quantum distribution functions	2
Lec6	Quantum coherence functions and interferometry; coherence functions in semiconductor systems: methods of measurement and significance	4
Lec7	Light-matter interaction: quantum description	4
Lec8	Simple laser theory; a single quantum dot laser	4
	Total hours	30

TEACHING TOOLS USED

N1 lecture with multimedia presentation N2 homework – solving problems

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

Evaluation (F – forming	Educational effect number	Way of evaluating educational effect	
(during semester), P –		achievement	
concluding (at semester			
end)			
F1	PEK_W01, PEK_W02,	Homework	
	PEK_W03, PEK_U01		
F2	PEK_W01, PEK_W02,	Final test	
	PEK_W03, PEK_U01		

P=0.4*F1+0.6*F2

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- 1. M. O. Scully, M. S. Zubairy, *Quantum Optics*
- 2. C. C. Gerry, P. L. Knight, Wstep do optyki kwantowej
- 3. Y. Yamamoto, A. Imamoglu, Mesoscopic Quantum Optics

SECONDARY LITERATURE:

- 1. R. Tanaś, Wykłady z optyki kwantowej, http://zon8.physd.amu.edu.pl/~tanas/optkwant.pdf
- 2. Stanisław Kryszewski, Quantum Optics, http://iftia9.univ.gda.pl/~sjk/QO-SK.pdf

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) Paweł Machnikowski, Pawel.Machnikowski@pwr.edu.pl