WROCŁAW UNIVERSITY OF TECHNOLOGY - PHD STUDIES

FACULTY of Fundamental Problems of Technology					
SUBJECT CARD					
Course name in Polish Macierze w technice i informatyce					
Course name in English Matrices in technique and computer science					
Course language Polish					
University-wide general course type: 1) basic course (mathematics, physics, chemistry, other) 2) humanity course 3) managerial skills 4) English language 5) ether modern langtage Departmental course developing professional skills: 1) specialized course 2) interdisciplinary course 3) seminar (interdisciplinary, specialized, departmental)					
Type of course (obligatory, optional)					
Educational effects according to ZW 26/2017: P8S_WG, P8S_UW, P8S_KR					
Subject code MAP 9900					
*delete as applicable					
	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30				
Number of hours of total student workload (CNPS)	90				
Form of crediting	Examination / $\begin{aligned} & \text { crediting with } \\ & \text { grade* }\end{aligned}$	$\begin{aligned} & \text { Examination / } \\ & \text { crediting with } \\ & \text { grade* }^{*} \end{aligned}$	Examination / crediting with grade*	Examination / crediting with grade*	$\begin{aligned} & \text { Examination / } \\ & \text { crediting with } \\ & \text { grade* } \end{aligned}$
For group of courses mark (X) final course					
Number of ECTS points 3					
including number of ECTS points for practical (P) classes					
including number of 2 ECTS points for direct teacher-student contact (BK) classes *delete as applicable					
PREREQUISITES	RELATING T	KNOWLEDG	, SKILLS AI	D OTHER CO	MPETENCES

WROCŁAW UNIVERSITY OF TECHNOLOGY - PHD STUDIES

1. Linear algebra

SUBJECT OBJECTIVES

C1 Geting to know selected algorithms of numerical algebra and their applications in technique and computer science
C2 Acquirement of skill of choice of appropriate numerical methods of algebra for solving different problems in technique and computer science

SUBJECT EDUCATIONAL EFFECTS

Relating to knowledge:

PEK_W01 Students knows decompositions of matrices and their applications
PEK_W02 Students knows functions of matrices nad matrix equations
PEK_W03 Student knows numerical algorithms of algebra applied in technique and computer science

Relating to skills:

PEK_U01 Students is able to analyze properties of numerical algorithms
PEK_U02 Students manages to select appropriate algorithms of numerical algebra to solving some problems of technique and computer science
PEK_U03 Students is able to plan numerical experiments and generate test matrices
Relating to social competences:
PEK_K01 Student is aware of social role of researches

PROGRAMME CONTENT		
Form of classes - lecture		Number of hours
Lec 1	Basic notions of linear algebra	2
Lec 2	Decompositions of matrices: LU, Cholesky, QR, SVD, Schur. Image compression, low rank approximation.	2
Lec 3	Elementary transfomations applied in numerical algebra. Random test matrices.	2
Lec 4	Conditioning of system of linear equations. Floating point arithmetic, standard IEEE 754.	2
Lec 5	Variants ijk of Gauss elimination. Basic iterative algorithm for system of linear equations.	2
Lec 6	Conditioning of eigenvalues. Bisection method for computing eigenvalues of symmetric tridiagonal matrices.	2
Lec 7	QR method for eigenvalues of matrices.	2
Lec 8	Perron-Frobenius theory. PageRank method. Power method for computing eigenvalues.	2
Lec 9	Sylvester and Lyapunov matrix equation. Functions of matrices. Roots of matrices.	2
Lec 10	Algorithms for computing matrix sign function - applications to Riccati and Sylvester matrix equations.	2
Lec 11	Linear least squares problem - algorithms and conditioning.	2
Lec 12	Nonlinear least squares problem. Algorithm of Broyden, updating of QR decomposition.	2
Lec 13	Orthogonal Procrustes problem and its generalizations. Polar decomposition of matrix - algorithms.	2
Led 14	Tensor SVD. Face recognition and handwriting digits recognition by SVD and tensor SVD.	2

WROCŁAW UNIVERSITY OF TECHNOLOGY - PHD STUDIES

Lec 15	Open problems and new trends. Discussion.	2
	Total hours	30
TEACHING TOOLS USED		
N1. Lectures		
N2. Discussion during lectures		

EVALUATION OF SUBJECT EDUCATIONAL EFFECTS ACHIEVEMENT

